Tightness in contact metric 3-manifolds

被引:0
|
作者
John B. Etnyre
Rafal Komendarczyk
Patrick Massot
机构
[1] Georgia Institute of Technology,School of Mathematics
[2] Tulane University,Department of Mathematics
[3] Université Paris Sud 11,Département de Mathématiques
来源
Inventiones mathematicae | 2012年 / 188卷
关键词
Sectional Curvature; Contact Structure; Contact Form; Characteristic Foliation; Nonpositive Curvature;
D O I
暂无
中图分类号
学科分类号
摘要
This paper begins the study of relations between Riemannian geometry and global properties of contact structures on 3-manifolds. In particular we prove an analog of the sphere theorem from Riemannian geometry in the setting of contact geometry. Specifically, if a given three dimensional contact manifold (M,ξ) admits a complete compatible Riemannian metric of positive 4/9-pinched curvature then the underlying contact structure ξ is tight; in particular, the contact structure pulled back to the universal cover is the standard contact structure on S3. We also describe geometric conditions in dimension three for ξ to be universally tight in the nonpositive curvature setting.
引用
收藏
页码:621 / 657
页数:36
相关论文
共 50 条
  • [1] Tightness in contact metric 3-manifolds
    Etnyre, John B.
    Komendarczyk, Rafal
    Massot, Patrick
    INVENTIONES MATHEMATICAE, 2012, 188 (03) : 621 - 657
  • [2] On a new class of contact metric 3-manifolds
    Karatsobanis J.N.
    Xenos P.J.
    Journal of Geometry, 2004, 80 (1-2) : 136 - 153
  • [3] THREE CLASSES OF PSEUDOSYMMETRIC CONTACT METRIC 3-MANIFOLDS
    Gouli-Andreou, Florence
    Moutafi, Evaggelia
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 245 (01) : 57 - 77
  • [4] TWO CLASSES OF PSEUDOSYMMETRIC CONTACT METRIC 3-MANIFOLDS
    Gouli-Andreou, Florence
    Moutafi, Evaggelia
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (01) : 17 - 37
  • [5] TORSION AND DEFORMATION OF CONTACT METRIC STRUCTURES ON 3-MANIFOLDS
    GOLDBERG, SI
    TOTH, G
    TOHOKU MATHEMATICAL JOURNAL, 1987, 39 (03) : 365 - 372
  • [6] A Class of Conformally flat Contact Metric 3-Manifolds
    Florence Gouli-Andreou
    Ramesh Sharma
    Results in Mathematics, 2003, 43 (1-2) : 114 - 120
  • [7] SOME WEAKLY EINSTEIN CONTACT METRIC 3-MANIFOLDS
    Wang, Yaning
    Wang, Pei
    KODAI MATHEMATICAL JOURNAL, 2023, 46 (03) : 324 - 339
  • [8] Two classes of conformally flat contact metric 3-manifolds
    Gouli-Andreou F.
    Xenos P.J.
    Journal of Geometry, 1999, 64 (1-2) : 80 - 88
  • [9] TORSION AND DEFORMATION OF CONTACT METRIC STRUCTURES ON 3-MANIFOLDS - ADDENDUM
    GOLDBERG, SI
    TOTH, G
    TOHOKU MATHEMATICAL JOURNAL, 1989, 41 (02) : 259 - 262
  • [10] The harmonicity of the Reeb vector field on contact metric 3-manifolds
    Koufogiorgos, Themis
    Markellos, Michael
    Papantoniou, Vassilis J.
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 234 (02) : 325 - 344