Comparative evaluation of supervised machine learning algorithms in the prediction of the relative density of 316L stainless steel fabricated by selective laser melting

被引:0
|
作者
Germán Omar Barrionuevo
Jorge Andrés Ramos-Grez
Magdalena Walczak
Carlos Andrés Betancourt
机构
[1] Pontificia Universidad Católica de Chile,Department of Mechanical and Metallurgical Engineering, School of Engineering
[2] Research Center for Nanotechnology and Advanced Materials (CIEN-UC),Graduate Institute of Automation Technology
[3] National Taipei University of Technology,undefined
关键词
Selective laser melting; Stainless steel 316L; Relative density; Machine learning; Regressor;
D O I
暂无
中图分类号
学科分类号
摘要
To find a robust combination of selective laser melting (SLM) process parameters to achieve the highest relative density of 3D printed parts, predicting the relative density of 316L stainless steel 3D printed parts was studied using a set of machine learning algorithms. The SLM process brings about the possibility to process metal powders and built complex geometries. However, this technology’s applicability is limited due to the inherent anisotropy of the layered manufacturing process, which generates porosity between adjacent layers, accelerating wear of the built parts when in service. To reduce interlayer porosity, the selection of SLM process parameters has to be properly optimized. The relative density of these manufactured objects is affected by porosity and is a function of process parameters, rendering it a challenging optimization task to solve. In this work, seven supervised machine learning regressors (i.e., support vector machine, decision tree, random forest, gradient boosting, Gaussian process, K-nearest neighbors, multi-layer perceptron) were trained to predict the relative density of 316L stainless steel samples produced by the SLM process. For this purpose, a total of 112 data sets were assembled from a deep literature review, and 5-fold cross-validation was applied to assess the regressor error. The accuracy of the predictions was evaluated by defining an index of merit, i.e., the norm of a vector whose components are the statistical metrics: root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). From this index of merit, it is established that the use of gradient boosting regressor shows the highest accuracy, followed by multi-layer perceptron and random forest regressor.
引用
收藏
页码:419 / 433
页数:14
相关论文
共 50 条
  • [11] Effect of SiC Addition on Microhardness and Relative Density during Selective Laser Melting of 316L Stainless Steel
    Hadi, Raid Mohammed
    Taha, Ziad Aeyad
    JOURNAL OF ENGINEERING, 2022, 2022
  • [12] Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated Using Selective Laser Melting
    N. Iqbal
    E. Jimenez-Melero
    U. Ankalkhope
    J. Lawrence
    MRS Advances, 2019, 4 : 2431 - 2439
  • [13] Cavitation erosion resistance of 316L stainless steel fabricated using selective laser melting
    Ding, Hongqin
    Tang, Qing
    Zhu, Yi
    Zhang, Chao
    Yang, Huayong
    FRICTION, 2021, 9 (06) : 1580 - 1598
  • [14] Cavitation erosion resistance of 316L stainless steel fabricated using selective laser melting
    Hongqin DING
    Qing TANG
    Yi ZHU
    Chao ZHANG
    Huayong YANG
    Friction, 2021, 9 (06) : 1580 - 1598
  • [15] Cavitation erosion resistance of 316L stainless steel fabricated using selective laser melting
    Hongqin Ding
    Qing Tang
    Yi Zhu
    Chao Zhang
    Huayong Yang
    Friction, 2021, 9 : 1580 - 1598
  • [16] Compressive Behavior of 316L Stainless Steel Lattice Structures Fabricated by Selective Laser Melting
    Lee, Jin-Myeong
    Lee, Jung-Eum
    Kim, Ji-Hoon
    Kim, Sang-Woo
    KOREAN JOURNAL OF METALS AND MATERIALS, 2020, 58 (04): : 227 - 233
  • [17] Effect of Preheating on Mechanical Properties of 316L Stainless Steel Fabricated by Selective Laser Melting
    Xie Miaoxia
    Xin Qike
    Li Yanxin
    Raza, Khan Muhammad
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (08):
  • [18] Microstructure and Anisotropy of the Mechanical Properties of 316L Stainless Steel Fabricated by Selective Laser Melting
    Zhou, Baogang
    Xu, Pingwei
    Li, Wei
    Liang, Yilong
    Liang, Yu
    METALS, 2021, 11 (05)
  • [19] Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated Using Selective Laser Melting
    Iqbal, N.
    Jimenez-Melero, E.
    Ankalkhope, U.
    Lawrence, J.
    MRS ADVANCES, 2019, 4 (44-45) : 2431 - 2439
  • [20] Surface treatment and corrosion behavior of 316L stainless steel fabricated by selective laser melting
    Lv, Shasha
    Tao, Huimin
    Hong, Yuanjian
    Zheng, Yuanyuan
    Zhou, Chengshuang
    Zheng, Jinyang
    Zhang, Lin
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10):