Dynamics in the Charged Restricted Circular Three-Body Problem

被引:0
|
作者
J. F. Palacián
C. Vidal
J. Vidarte
P. Yanguas
机构
[1] Universidad Pública de Navarra,Departamento de Ingeniería Matemática e Informática and Institute of Advanced Materials (INAMAT)
[2] Universidad del Bío-Bío,Grupo de Investigación en Sistemas Dinámicos y Aplicaciones
[3] Universidad del Bío-Bío,GISDA, Departamento de Matemática, Facultad de Ciencias
关键词
Charged restricted circular three body problem; Averaging; normalisation and reduction; Reduced space and invariants; Reeb’s Theorem; Periodic solutions and linear stability; KAM tori; Bifurcations; 34C15; 34C20; 34C25; 37J40; 70K65;
D O I
暂无
中图分类号
学科分类号
摘要
The existence and stability of periodic solutions for different types of perturbations associated to the Charged Restricted Circular Three Body Problem (shortly, CHRCTBP) is tackled using reduction and averaging theories as well as the technique of continuation of Poincaré for the study of symmetric periodic solutions. The determination of KAM 2-tori encasing some of the linearly stable periodic solutions is proved. Finally, we analyze the occurrence of Hamiltonian-Hopf bifurcations associated to some equilibrium points of the CHRCTBP.
引用
收藏
页码:1757 / 1774
页数:17
相关论文
共 50 条
  • [21] Equilibrium dynamics of a circular restricted three-body problem with Kerr-like primaries
    Alrebdi, H., I
    Dubeibe, Fredy L.
    Papadakis, Konstantinos E.
    Zotos, Euaggelos E.
    [J]. NONLINEAR DYNAMICS, 2022, 107 (01) : 433 - 456
  • [22] Investigating the impact of non-spherical bodies and three-body interactions on equilibrium dynamics in the circular restricted three-body problem
    Moneer, Eman M.
    Elaissi, Samira
    Dubeibe, Fredy L.
    Zotos, Euaggelos E.
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 176
  • [23] Dynamics of the Parabolic Restricted Collinear Three-Body Problem
    Delgado, Joaquin
    Vidal, Claudio
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (01): : 172 - 204
  • [24] Relative Motion Dynamics in the Restricted Three-Body Problem
    Franzini, Giovanni
    Innocenti, Mario
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2019, 56 (05) : 1322 - 1337
  • [25] On perturbation solutions in the restricted three-body problem dynamics
    Lara, Martin
    [J]. ACTA ASTRONAUTICA, 2022, 195 : 596 - 604
  • [26] Local Orbital Elements for the Circular Restricted Three-Body Problem
    Peterson, Luke T.
    Scheeres, Daniel J.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2023, 46 (12) : 2275 - 2289
  • [27] From the circular to the spatial elliptic restricted three-body problem
    Palacian, J. F.
    Yanguas, P.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2006, 95 (1-4): : 81 - 99
  • [28] Perturbation effects in the generalized circular restricted three-body problem
    Singh, J.
    Amuda, T. O.
    [J]. INDIAN JOURNAL OF PHYSICS, 2018, 92 (11) : 1347 - 1355
  • [29] A review of periodic orbits in the circular restricted three-body problem
    ZHANG Renyong
    [J]. Journal of Systems Engineering and Electronics, 2022, 33 (03) : 612 - 646
  • [30] Robust control of the circular restricted three-body problem with drag
    Limebeer, David J. N.
    Sabatta, Deon
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (02) : 490 - 501