Dynamics of an anharmonic oscillator with a periodic perturbation

被引:0
|
作者
Yu. L. Bolotin
V. Yu. Gonchar
M. Ya. Granovskii
A. V. Chechkin
机构
[1] National Scientific Center,Kharkov Institute of Physics and Technology
关键词
Spectroscopy; State Physics; Field Theory; Elementary Particle; Quantum Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study the features of the stochastic dynamics of a Hamiltonian system with the potential x2n subjected to an external monochromatic perturbation. Three regimes of stochastic diffusion, which differ in the value of the amplitude of the external perturbation, are detected. We demonstrate the possibility of chaotic regimes manifesting themselves in pendulum vibrations of the well of a water-moderated and-cooled nuclear power reactor as an application of the model being investigated. Finally, we propose a method of simple proportional control, which makes it possible to control the chaotic vibrations of the anharmonic oscillator.
引用
收藏
页码:196 / 205
页数:9
相关论文
共 50 条
  • [21] PERTURBATION-THEORY AND HYPERVIRIAL THEOREMS FOR THE ANHARMONIC-OSCILLATOR
    DMITRIEVA, IK
    PLINDOV, GI
    PHYSICS LETTERS A, 1980, 79 (01) : 47 - 50
  • [22] Transformation of the asymptotic perturbation expansion for the anharmonic oscillator into a convergent expansion
    Ivanov, IA
    PHYSICS LETTERS A, 2004, 322 (3-4) : 194 - 204
  • [23] PERTURBATION-THEORY OF THE ANHARMONIC-OSCILLATOR AT LARGE ORDERS
    AUBERSON, G
    MENNESSIER, G
    MAHOUX, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 48 (01): : 1 - 23
  • [24] Multiple-scale perturbation theory of sextic anharmonic oscillator
    Cheng, YF
    Dai, TQ
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (06): : 513 - 516
  • [25] Convergent perturbation theory for a q-deformed anharmonic oscillator
    Dick, R
    Pollok-Narayanan, A
    Steinacker, H
    Wess, J
    EUROPEAN PHYSICAL JOURNAL C, 1999, 7 (02): : 363 - 368
  • [26] Multiple-scale perturbation theory of generalized anharmonic oscillator
    Cheng Yan-Fu
    Dai Tong-Qing
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (10): : 944 - 949
  • [27] A tractable example of perturbation theory with a field cutoff: the anharmonic oscillator
    Li, L
    Meurice, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (37): : 8139 - 8153
  • [28] Convergent perturbation theory for a q-deformed anharmonic oscillator
    Dick R.
    Pollok-Narayanan A.
    Steinacker H.
    Wess J.
    The European Physical Journal C - Particles and Fields, 1999, 7 (2): : 363 - 368
  • [29] ON THE EXISTENCE OF THE DYNAMICS FOR ANHARMONIC QUANTUM OSCILLATOR SYSTEMS
    Nachtergaele, Bruno
    Schlein, Benjamin
    Sims, Robert
    Starr, Shannon
    Zagrebnov, Valentin
    REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (02) : 207 - 231
  • [30] QUANTUM AND CLASSICAL DYNAMICS OF AN ANHARMONIC-OSCILLATOR
    GERRY, CC
    PHYSICS LETTERS A, 1990, 146 (7-8) : 363 - 368