Infinitely divisible limit processes for the Ewens sampling formula

被引:0
|
作者
Babu G.J. [1 ]
Manstavičius E. [2 ]
机构
[1] Department of Statistics, 319 Thomas Building, Pennsylvania State University, University Park
[2] Department of Mathematics and Informatics, Vilnius University, LT-2600 Vilnius
基金
美国国家科学基金会;
关键词
Allelic partition; Functional limit theorem stable process; Permutation; Population genetics; Probabilistic number theory; Random partition; Skorokhod topology;
D O I
10.1023/A:1020265607917
中图分类号
学科分类号
摘要
The Ewens sampling formula in population genetics can be viewed as a probability measure on the group of permutations of a finite set of integers. Functional limit theory for processes defined through partial sums of dependent variables with respect to the Ewens sampling formula is developed. Using techniques from probabilistic number theory, it is shown that, under very general conditions, a partial sum process weakly converges in a function space if and only if the corresponding process defined through sums of independent random variables weakly converges. As a consequence of this result, necessary and sufficient conditions for weak convergence to a stable process are established. A counterexample showing that these conditions are not necessary for the one-dimensional convergence is presented. Very few results on the necessity part are known in the literature. © 2002 Plenum Publishing Corporation.
引用
下载
收藏
页码:232 / 242
页数:10
相关论文
共 50 条