Sigma-Model Solitons on Noncommutative Spaces

被引:0
|
作者
Ludwik Dabrowski
Giovanni Landi
Franz Luef
机构
[1] SISSA (Scuola Internazionale Superiore di Studi Avanzati),Department of Mathematics
[2] Matematica,undefined
[3] Università di Trieste,undefined
[4] INFN,undefined
[5] Sezione di Trieste,undefined
[6] NTNU Trondheim,undefined
来源
关键词
Primary 58E20; 35C08; Secondary 42C15; 58B34; 42B35; noncommutative sigma models; self-duality equations; solitons; Moyal plane; noncommutative tori; time–frequency analysis; Gabor analysis; frames; Morita duality bimodules;
D O I
暂无
中图分类号
学科分类号
摘要
We use results from time–frequency analysis and Gabor analysis to construct new classes of sigma-model solitons over the Moyal plane and over noncommutative tori, taken as source spaces, with a target space made of two points. A natural action functional leads to self-duality equations for projections in the source algebra. Solutions, having nontrivial topological content, are constructed via suitable Morita duality bimodules.
引用
收藏
页码:1663 / 1688
页数:25
相关论文
共 50 条
  • [31] NONLINEAR SIGMA-MODEL ON SUPERGROUP
    KOBAYASHI, K
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1986, 30 (04): : 643 - 645
  • [32] Universality of atruncated sigma-model
    Alexandru, Andrei
    Bedaque, Paulo F.
    Carosso, Andrea
    Sheng, Andy
    PHYSICS LETTERS B, 2022, 832
  • [33] COMPLEXIFIED SIGMA-MODEL AND DUALITY
    Nieto, J. A.
    MODERN PHYSICS LETTERS A, 2011, 26 (22) : 1631 - 1643
  • [34] THE ETIOLOGY OF SIGMA-MODEL ANOMALIES
    MOORE, G
    NELSON, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 100 (01) : 83 - 132
  • [35] RENORMALIZATION OF LINEAR SIGMA-MODEL
    MIGNACO, JA
    REMIDDI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1971, A 1 (03): : 376 - +
  • [36] THE OPERATOR EXPANSION IN THE SIGMA-MODEL
    TERENTEV, MV
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1987, 45 (02): : 368 - 376
  • [37] MULTILOOP CALCULATIONS IN SIGMA-MODEL
    MARGULIES, M
    PHYSICAL REVIEW D, 1976, 13 (06): : 1621 - 1641
  • [38] A topological gauged sigma-model
    Baptista, J. M.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 9 (06) : 1007 - 1047
  • [39] SU(4) SIGMA-MODEL
    SCHECHTER, J
    SINGER, M
    PHYSICAL REVIEW D, 1975, 12 (09): : 2781 - 2790
  • [40] SPHALERON IN A NONLINEAR SIGMA-MODEL
    SOGO, K
    FUJIMOTO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (01) : 9 - 11