Models, figures, and gravitational moments of Jupiter’s satellites Io and Europa

被引:0
|
作者
V. N. Zharkov
B. S. Karamurzov
机构
[1] Russian Academy of Sciences,Schmidt Institute of Physics of the Earth
[2] Kabardino-Balkarskii State University,undefined
来源
Astronomy Letters | 2006年 / 32卷
关键词
96.15.Bc; 96.15.Ef; 96.30.Kf; 96.30.L-; 96.30.Ib; 96.30.Id; Solar system—planets; small bodies; heliosphere; Galilean satellites Io and Europa; models; figures; gravitational moments;
D O I
暂无
中图分类号
学科分类号
摘要
Two types of trial three-layer models have been constructed for the satellites Io and Europa. In the models of the first type (Io1 and E1), the cores are assumed to consist of eutectic Fe-FeS melt with the densities ρ1 = 5.15 g cm−3 (Io1) and 5.2 g cm−3 (E1). In the models of the second type (Io3 and E3), the cores consist of FeS with an admixture of nickel and have the density ρ1 = 4.6 g cm−3. The approach used here differs from that used previously both in chosen model chemical composition of these satellites and in boundary conditions imposed on the models. The most important question to be answered by modeling the internal structure of the Galilean satellites is that of the condensate composition at the formation epoch of Jupiter’s system. Jupiter’s core and the Galilean satellites were formed from the condensate. Ganymede and Callisto were formed fairly far from Jupiter in zones with temperatures below the water condensation temperature, water was entirely incorporated into their bodies, and their modeling showed the mass ratio of the icy (I) component to the rock (R) component in them to be I/R ∼ 1. The R composition must be clarified by modeling Io and Europa. The models of the second type (Io3 and E3), in which the satellite cores consist of FeS, yield 25.2 (Io3) and 22.8 (E3) for the core masses (in weight %). In discussing the R composition, we note that, theoretically, the material of which the FeS+Ni core can consist in the R accounts for ∼25.4% of the satellite mass. In this case, such an important parameter as the mantle silicate iron saturation is Fe# = 0.265. The Io3 and E3 models agree well with this theoretical prediction. The models of the first and second types differ markedly in core radius; thus, in principle, the R composition in the formation zone of Jupiter’s system can be clarified by geophysical studies. Another problem studied here is that of the error made in modeling Io and Europa using the Radau-Darvin formula when passing from the Love number k2 to the nondimensional polar moment of inertia \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar C$$ \end{document}. For Io, the Radau-Darvin formula underestimates the true value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar C$$ \end{document} by one and a half units in the third decimal digit. For Europa, this effect is approximately a factor of 3 smaller, which roughly corresponds to a ratio of the small parameters for the satellites under consideration αIo/αEuropa ∼ 3.4. In modeling the internal structure of the satellites, the core radius depends strongly on both the mean moment of inertia I* and k2. Therefore, the above discrepancy in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar C$$ \end{document} for Io is appreciable.
引用
收藏
页码:495 / 505
页数:10
相关论文
共 50 条
  • [21] Chemical differentiation of the Galilean satellites of Jupiter: 2. Interior structure of Europa
    Kuskov, OL
    Kronrod, VA
    GEOCHEMISTRY INTERNATIONAL, 2003, 41 (09) : 897 - 914
  • [22] Chemical differentiation of the galilean satellites of Jupiter: 2. Interior structure of Europa
    Kuskov, O.L.
    Kronrod, V.A.
    Geokhimiya, 2003, 41 (09): : 984 - 1002
  • [23] The Io, Europa, and Ganymede Auroral Footprints at Jupiter in the Ultraviolet: Positions and Equatorial Lead Angles
    Hue, V.
    Gladstone, G. R.
    Louis, C. K.
    Greathouse, T. K.
    Bonfond, B.
    Szalay, J. R.
    Moirano, A.
    Giles, R. S.
    Kammer, J. A.
    Imai, M.
    Mura, A.
    Versteeg, M. H.
    Clark, G.
    Gerard, J. -c.
    Grodent, D. C.
    Rabia, J.
    Sulaiman, A. H.
    Bolton, S. J.
    Connerney, J. E. P.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (05)
  • [24] The Gravitational Imprint of an Interior-Orbital Resonance in Jupiter-Io
    Idini, Benjamin
    Stevenson, David J.
    PLANETARY SCIENCE JOURNAL, 2022, 3 (04):
  • [25] Surface Charging of Jupiter's Moon Europa
    Reddy, Sachin A.
    Nordheim, Tom A.
    Harris, Camilla D. K.
    ASTROPHYSICAL JOURNAL LETTERS, 2024, 962 (02)
  • [26] Europa Modifies Jupiter's Plasma Sheet
    Szalay, J. R.
    Saur, J.
    McComas, D. J.
    Allegrini, F.
    Bagenal, F.
    Bolton, S. J.
    Ebert, R. W.
    Kim, T. K.
    Livadiotis, G.
    Poppe, A. R.
    Valek, P.
    Wilson, R. J.
    Zirnstein, E. J.
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (06)
  • [27] Io's Optical Aurorae in Jupiter's Shadow
    Schmidt, Carl
    Sharov, Mikhail
    de Kleer, Katherine
    Schneider, Nick
    de Pater, Imke
    Phipps, Phillip H.
    Conrad, Albert
    Moore, Luke
    Withers, Paul
    Spencer, John
    Morgenthaler, Jeff
    Ilyin, Ilya
    Strassmeier, Klaus
    Veillet, Christian
    Hill, John
    Brown, Mike
    PLANETARY SCIENCE JOURNAL, 2023, 4 (02):
  • [28] Jupiter's magnetospheric change by Io's volcanoes
    Yoneda, M.
    Nozawa, H.
    Misawa, H.
    Kagitani, M.
    Okano, S.
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [29] Galileo explores Jupiter's satellites
    Childress, JO
    GEOTIMES, 1996, 41 (10): : 12 - 14
  • [30] On the orbital planes of Jupiter's satellites
    de Sitter, W
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1907, 8 : 767 - 780