Existence of a nontrivial solution for a strongly indefinite periodic Choquard system

被引:0
|
作者
Shaowei Chen
Liqin Xiao
机构
[1] Huaqiao University,School of Mathematical Sciences
关键词
35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Choquard system -Δu+V(x)u+|u|p-2u=λϕu,inR3,-Δϕ=u2,inR3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array} [c]{ll} -\Delta u+V( x) u+|u|^{p-2}u=\lambda \phi u , &{}\quad \text{ in } \mathbb {R}^{3},\\ -\Delta \phi = u^{2}, &{}\quad \text{ in } \mathbb {R}^{3}. \end{array} \right. \end{aligned}$$\end{document}where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter, 3<p<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3<p<6$$\end{document}, V∈C(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in C( \mathbb {R}^{3}) $$\end{document} is 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}-periodic in xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_j$$\end{document} for j=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j = 1,2,3$$\end{document} and 0 is in a spectral gap of the operator -Δ+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +V$$\end{document}. This system is strongly indefinite, i.e., the operator -Δ+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +V$$\end{document} has infinite-dimensional negative and positive spaces and it has a competitive interplay of the nonlinearities |u|p-2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u|^{p-2}u$$\end{document} and λϕu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \phi u$$\end{document}. Moreover, the functional corresponding to this system does not satisfy the Palais–Smale condition. Using a new infinite-dimensional linking theorem, we prove that, for sufficiently small λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0,$$\end{document} this system has a nontrivial solution.
引用
收藏
页码:599 / 614
页数:15
相关论文
共 50 条
  • [21] EXISTENCE OF NONTRIVIAL SOLUTIONS TO CHERN-SIMONS-SCHRODINGER SYSTEM WITH INDEFINITE POTENTIAL
    Kang, Jincai
    Tang, Chunlei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (06): : 1931 - 1944
  • [22] A nontrivial solution for a nonautonomous Choquard equation with general nonlinearity
    Ding, Ling
    Liu, Jiu
    Yuan, Yan-Xiang
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (66) : 1 - 11
  • [23] A General Result to the Existence of a Periodic Solution to an Indefinite Equation with a Weak Singularity
    Godoy, Jose
    Zamora, Manuel
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (01) : 451 - 468
  • [24] A General Result to the Existence of a Periodic Solution to an Indefinite Equation with a Weak Singularity
    José Godoy
    Manuel Zamora
    Journal of Dynamics and Differential Equations, 2019, 31 : 451 - 468
  • [25] Existence of nontrivial solutions for fractional Choquard equations with critical or supercritical growth
    Li, Quanqing
    Zhang, Jian
    Wang, Wenbo
    Teng, Kaimin
    APPLICABLE ANALYSIS, 2022, 101 (03) : 849 - 857
  • [26] On the existence of a periodic solution of the Lienard system
    Ignatyev, Alexander
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (01): : 47 - 53
  • [27] Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential
    Gao, Fashun
    Yang, Minbo
    Zhou, Jiazheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [28] Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients
    Kuniya, Toshikazu
    APPLIED MATHEMATICS LETTERS, 2014, 27 : 15 - 20
  • [29] EXISTENCE RESULTS FOR STRONGLY INDEFINITE ELLIPTIC SYSTEMS
    Yang, Jianfu
    Ye, Ying
    Yu, Xiaohui
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [30] EXISTENCE OF A SOLUTION OF A STRONGLY NONLINEAR ELLIPTIC SYSTEM
    KIRICHENKO, VF
    SUROVA, NS
    DIFFERENTIAL EQUATIONS, 1986, 22 (10) : 1211 - 1215