Existence of a nontrivial solution for a strongly indefinite periodic Choquard system

被引:0
|
作者
Shaowei Chen
Liqin Xiao
机构
[1] Huaqiao University,School of Mathematical Sciences
关键词
35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Choquard system -Δu+V(x)u+|u|p-2u=λϕu,inR3,-Δϕ=u2,inR3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array} [c]{ll} -\Delta u+V( x) u+|u|^{p-2}u=\lambda \phi u , &{}\quad \text{ in } \mathbb {R}^{3},\\ -\Delta \phi = u^{2}, &{}\quad \text{ in } \mathbb {R}^{3}. \end{array} \right. \end{aligned}$$\end{document}where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter, 3<p<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3<p<6$$\end{document}, V∈C(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in C( \mathbb {R}^{3}) $$\end{document} is 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}-periodic in xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_j$$\end{document} for j=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j = 1,2,3$$\end{document} and 0 is in a spectral gap of the operator -Δ+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +V$$\end{document}. This system is strongly indefinite, i.e., the operator -Δ+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +V$$\end{document} has infinite-dimensional negative and positive spaces and it has a competitive interplay of the nonlinearities |u|p-2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u|^{p-2}u$$\end{document} and λϕu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \phi u$$\end{document}. Moreover, the functional corresponding to this system does not satisfy the Palais–Smale condition. Using a new infinite-dimensional linking theorem, we prove that, for sufficiently small λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0,$$\end{document} this system has a nontrivial solution.
引用
收藏
页码:599 / 614
页数:15
相关论文
共 50 条
  • [1] Existence of a nontrivial solution for a strongly indefinite periodic Choquard system
    Chen, Shaowei
    Xiao, Liqin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 599 - 614
  • [2] EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION
    BUFFONI, B
    JEANJEAN, L
    STUART, CA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) : 179 - 186
  • [3] Ground state solution for strongly indefinite Choquard system
    Chen, Jianqing
    Zhang, Qian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 220
  • [4] Existence of a nontrivial solution for Choquard's equation
    Zhang Zhengjie
    Kuepper, Tassilo
    Hu Ailian
    Xia Hongqiang
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (03) : 460 - 468
  • [5] EXISTENCE OF A NONTRIVIAL SOLUTION FOR CHOQUARD’S EQUATION
    张正杰
    Tassilo Küpper
    胡爱莲
    夏红强
    Acta Mathematica Scientia, 2006, (03) : 460 - 468
  • [6] Existence of Multiple Nontrivial Solutions for a Strongly Indefinite Schrodinger-Poisson System
    Chen, Shaowei
    Xiao, Liqin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] Ground state solution for a class of Choquard equation with indefinite periodic potential
    Chen, Fulai
    Liao, Fangfang
    Geng, Shifeng
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [8] Existence of nontrivial weak solutions for a quasilinear Choquard equation
    Lee, Jongrak
    Kim, Jae-Myoung
    Bae, Jung-Hyun
    Park, Kisoeb
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [9] Existence of nontrivial weak solutions for a quasilinear Choquard equation
    Jongrak Lee
    Jae-Myoung Kim
    Jung-Hyun Bae
    Kisoeb Park
    Journal of Inequalities and Applications, 2018
  • [10] EXISTENCE AND NONEXISTENCE OF NONTRIVIAL SOLUTIONS FOR CHOQUARD TYPE EQUATIONS
    Wang, Tao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,