In this paper, we consider the operator L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L$$\end{document} generated in L2R+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{2}\left( \mathbb{R }_{+}\right) $$\end{document} by the differential expression ly=-y''+ν2-14x2+qxy,x∈R+:=0,∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} l\left( y\right) =-y^{\prime \prime }+\left[ \frac{\nu ^{2}-\frac{1}{4}}{x^{2}}+q\left( x\right) \right] y,\,\,x\in \mathbb{R }_{+}:=\left( 0,\infty \right) \end{aligned}$$\end{document}and the boundary condition limx→0x-ν-12yx=1,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \underset{x\rightarrow 0}{\lim }x^{-\nu -\frac{1}{2}}y\left( x\right) =1, \end{aligned}$$\end{document}where q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q$$\end{document} is a complex valued function and ν\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu $$\end{document} is a complex number with Reν>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Re\nu >0$$\end{document}. We have proved a spectral expansion of L in terms of the principal functions under the condition Supx∈R+eϵxq(x)<∞,ϵ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \underset{x\in \mathbb{R }_{+}}{Sup}\left\{ e^{\epsilon \sqrt{x}}\left| q(x)\right| \right\} <\infty , \epsilon >0 \end{aligned}$$\end{document}taking into account the spectral singularities. We have also investigated the convergence of the spectral expansion.