A nonsmooth algorithm for cone-constrained eigenvalue problems

被引:1
|
作者
Samir Adly
Alberto Seeger
机构
[1] Université de Limoges,XLIM UMR CNRS 6172
[2] Université d’Avignon,Département de Mathématiques
关键词
Complementarity problem; Cone-constrained eigenvalue problem; Semismooth Newton method; Polyhedral convex cone; Lorentz cone; Matrix pencil;
D O I
暂无
中图分类号
学科分类号
摘要
We study several variants of a nonsmooth Newton-type algorithm for solving an eigenvalue problem of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\ni x\perp(Ax-\lambda Bx)\in K^{+}.$$\end{document} Such an eigenvalue problem arises in mechanics and in other areas of applied mathematics. The symbol K refers to a closed convex cone in the Euclidean space ℝn and (A,B) is a pair of possibly asymmetric matrices of order n. Special attention is paid to the case in which K is the nonnegative orthant of ℝn. The more general case of a possibly unpointed polyhedral convex cone is also discussed in detail.
引用
收藏
页码:299 / 318
页数:19
相关论文
共 50 条
  • [11] Cone-Constrained Singular Value Problems
    Seeger, Alberto
    Sossa, David
    JOURNAL OF CONVEX ANALYSIS, 2023, 30 (04) : 1285 - 1306
  • [12] Solution stability of nonsmooth continuous systems with applications to cone-constrained optimization
    Jeyakumar, V
    Yen, ND
    SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (04) : 1106 - 1127
  • [13] Nonsmooth Cone-Constrained Optimization with Applications to Semi-Infinite Programming
    Mordukhovich, Boris S.
    Nghia, T. T. A.
    MATHEMATICS OF OPERATIONS RESEARCH, 2014, 39 (02) : 301 - 324
  • [14] Solution stability of nonsmooth continuous systems with applications to cone-constrained optimization
    Jeyakumar, V.
    Yen, N.D.
    SIAM J. Optim., 1600, 4 (1106-1127):
  • [15] CONE-CONSTRAINED CONTINUOUS-TIME MARKOWITZ PROBLEMS
    Czichowsky, Christoph
    Schweizer, Martin
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (02): : 764 - 810
  • [16] Characterizations of solution sets of cone-constrained convex programming problems
    Miao, Xin-He
    Chen, Jein-Shan
    OPTIMIZATION LETTERS, 2015, 9 (07) : 1433 - 1445
  • [17] A New Jacobian-Like Method for the Polyhedral Cone-Constrained Eigenvalue Problem
    Sun, Guo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [18] Characterizations of solution sets of cone-constrained convex programming problems
    Xin-He Miao
    Jein-Shan Chen
    Optimization Letters, 2015, 9 : 1433 - 1445
  • [19] Necessary Conditions for Weak Sharp Minima in Cone-Constrained Optimization Problems
    Zhang, W. Y.
    Xu, S.
    Li, S. J.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [20] On optimality conditions for cone-constrained optimization
    Izmailov, AF
    Solodov, MV
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 3162 - 3167