A nonsmooth algorithm for cone-constrained eigenvalue problems

被引:1
|
作者
Samir Adly
Alberto Seeger
机构
[1] Université de Limoges,XLIM UMR CNRS 6172
[2] Université d’Avignon,Département de Mathématiques
关键词
Complementarity problem; Cone-constrained eigenvalue problem; Semismooth Newton method; Polyhedral convex cone; Lorentz cone; Matrix pencil;
D O I
暂无
中图分类号
学科分类号
摘要
We study several variants of a nonsmooth Newton-type algorithm for solving an eigenvalue problem of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\ni x\perp(Ax-\lambda Bx)\in K^{+}.$$\end{document} Such an eigenvalue problem arises in mechanics and in other areas of applied mathematics. The symbol K refers to a closed convex cone in the Euclidean space ℝn and (A,B) is a pair of possibly asymmetric matrices of order n. Special attention is paid to the case in which K is the nonnegative orthant of ℝn. The more general case of a possibly unpointed polyhedral convex cone is also discussed in detail.
引用
收藏
页码:299 / 318
页数:19
相关论文
共 50 条
  • [1] A nonsmooth algorithm for cone-constrained eigenvalue problems
    Adly, Samir
    Seeger, Alberto
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (02) : 299 - 318
  • [2] CONE-CONSTRAINED RATIONAL EIGENVALUE PROBLEMS
    Seeger, Alberto
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 187 - 203
  • [3] Cone-Constrained Eigenvalue Problems: Structure of Cone Spectra
    Seeger, Alberto
    SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (03) : 605 - 619
  • [4] Numerical resolution of cone-constrained eigenvalue problems
    da Costa, A. Pinto
    Seeger, Alberto
    Computational and Applied Mathematics, 2009, 28 (01) : 37 - 61
  • [5] Cone-Constrained Eigenvalue Problems: Structure of Cone Spectra
    Alberto Seeger
    Set-Valued and Variational Analysis, 2021, 29 : 605 - 619
  • [6] Cone-constrained eigenvalue problems: theory and algorithms
    da Costa, A. Pinto
    Seeger, A.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (01) : 25 - 57
  • [7] Solving inverse cone-constrained eigenvalue problems
    Gajardo, Pedro
    Seeger, Alberto
    NUMERISCHE MATHEMATIK, 2013, 123 (02) : 309 - 331
  • [8] Solving inverse cone-constrained eigenvalue problems
    Pedro Gajardo
    Alberto Seeger
    Numerische Mathematik, 2013, 123 : 309 - 331
  • [9] Numerical resolution of cone-constrained eigenvalue problems
    Da Costa, A. Pinto
    Seeger, Alberto
    COMPUTATIONAL & APPLIED MATHEMATICS, 2009, 28 (01): : 37 - 61
  • [10] Cone-constrained eigenvalue problems: theory and algorithms
    A. Pinto da Costa
    A. Seeger
    Computational Optimization and Applications, 2010, 45 : 25 - 57