Prioritization and functional validation of target genes from single-cell transcriptomics studies

被引:0
|
作者
Liliana Sokol
Anne Cuypers
Anh-Co K. Truong
Ann Bouché
Katleen Brepoels
Joris Souffreau
Katerina Rohlenova
Stefan Vinckier
Luc Schoonjans
Guy Eelen
Mieke Dewerchin
Laura P.M.H. de Rooij
Peter Carmeliet
机构
[1] Leuven Cancer Institute (LKI),Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology
[2] Aarhus University,Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine
[3] Khalifa University of Science and Technology,Center for Biotechnology
[4] BIOCEV,Institute of Biotechnology of the Czech Academy of Sciences
[5] CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Translation of academic results into clinical practice is a formidable unmet medical need. Single-cell RNA-sequencing (scRNA-seq) studies generate long descriptive ranks of markers with predicted biological function, but without functional validation, it remains challenging to know which markers truly exert the putative function. Given the lengthy/costly nature of validation studies, gene prioritization is required to select candidates. We address these issues by studying tip endothelial cell (EC) marker genes because of their importance for angiogenesis. Here, by tailoring Guidelines On Target Assessment for Innovative Therapeutics, we in silico prioritize previously unreported/poorly described, high-ranking tip EC markers. Notably, functional validation reveals that four of six candidates behave as tip EC genes. We even discover a tip EC function for a gene lacking in-depth functional annotation. Thus, validating prioritized genes from scRNA-seq studies offers opportunities for identifying targets to be considered for possible translation, but not all top-ranked scRNA-seq markers exert the predicted function.
引用
收藏
相关论文
共 50 条
  • [11] Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies
    Wang, Ran
    Peng, Guangdun
    Tam, Patrick P. L.
    Jing, Naihe
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 13 - 23
  • [12] CAbiNet: joint clustering and visualization of cells and genes for single-cell transcriptomics
    Zhao, Yan
    Kohl, Clemens
    Rosebrock, Daniel
    Hu, Qinan
    Hu, Yuhui
    Vingron, Martin
    NUCLEIC ACIDS RESEARCH, 2024, 52 (13)
  • [13] Cell type prioritization in single-cell data
    Skinnider, Michael A.
    Squair, Jordan W.
    Kathe, Claudia
    Anderson, Mark A.
    Gautier, Matthieu
    Matson, Kaya J. E.
    Milano, Marco
    Hutson, Thomas H.
    Barraud, Quentin
    Phillips, Aaron A.
    Foster, Leonard J.
    La Manno, Gioele
    Levine, Ariel J.
    Courtine, Gregoire
    NATURE BIOTECHNOLOGY, 2021, 39 (01) : 30 - 34
  • [14] Cell type prioritization in single-cell data
    Michael A. Skinnider
    Jordan W. Squair
    Claudia Kathe
    Mark A. Anderson
    Matthieu Gautier
    Kaya J. E. Matson
    Marco Milano
    Thomas H. Hutson
    Quentin Barraud
    Aaron A. Phillips
    Leonard J. Foster
    Gioele La Manno
    Ariel J. Levine
    Grégoire Courtine
    Nature Biotechnology, 2021, 39 : 30 - 34
  • [15] Taking single-cell transcriptomics to the bedside
    Behjati, Sam
    Haniffa, Muzlifah
    NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (10) : 590 - U20
  • [16] Single-cell transcriptomics for microbial eukaryotes
    Kolisko, Martin
    Boscaro, Vittorio
    Burki, Fabien
    Lynn, Denis H.
    Keeling, Patrick J.
    CURRENT BIOLOGY, 2014, 24 (22) : R1081 - R1082
  • [17] Bead capture for single-cell transcriptomics
    Darren J. Burgess
    Nature Reviews Genetics, 2015, 16 : 195 - 195
  • [18] Taking single-cell transcriptomics to the bedside
    Sam Behjati
    Muzlifah Haniffa
    Nature Reviews Clinical Oncology, 2017, 14 : 590 - 592
  • [19] The rise of single-cell transcriptomics in yeast
    Nadal-Ribelles, Mariona
    Sole, Carme
    de Nadal, Eulalia
    Posas, Francesc
    YEAST, 2024, 41 (04) : 158 - 170
  • [20] Single-Cell Transcriptomics Applied in Plants
    Sun, Yanyan
    Sun, Jian
    Lin, Chunjing
    Zhang, Jingyong
    Yan, Hao
    Guan, Zheyun
    Zhang, Chunbao
    CELLS, 2024, 13 (18)