Sparse subspace clustering via nonconvex approximation

被引:0
|
作者
Wenhua Dong
Xiao-Jun Wu
Josef Kittler
He-Feng Yin
机构
[1] Jiangnan University,School of Internet of Things
[2] University of Surrey,Centre for Vision, Speech and Signal Processing
来源
关键词
Sparse subspace clustering; -minimization; Nonconvex approximation; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
Among existing clustering methods, sparse subspace clustering (SSC) obtains superior clustering performance in grouping data points from a union of subspaces by solving a relaxed ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-minimization problem by ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document}-norm. The use of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document}-norm instead of the ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document} one can make the object function convex, while it also causes large errors on large coefficients in some cases. In this work, we propose using the nonconvex approximation to replace ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-norm for SSC, termed as SSC via nonconvex approximation (SSCNA), and develop a novel clustering algorithm with the enhanced sparsity based on the Alternating Direction Method of Multipliers. We further prove that the proposed nonconvex approximation is closer to ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-norm than the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} one and is bounded by ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-norm. Numerical studies show that the proposed nonconvex approximation helps to improve clustering performance. We also theoretically verify the convergence of the proposed algorithm with a three-variable objective function. Extensive experiments on four benchmark datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:165 / 176
页数:11
相关论文
共 50 条
  • [41] Attention reweighted sparse subspace clustering
    Wang, Libin
    Wang, Yulong
    Deng, Hao
    Chen, Hong
    [J]. PATTERN RECOGNITION, 2023, 139
  • [42] Structural Reweight Sparse Subspace Clustering
    Wang, Ping
    Han, Bing
    Li, Jie
    Gao, Xinbo
    [J]. NEURAL PROCESSING LETTERS, 2019, 49 (03) : 965 - 977
  • [43] Building Invariances Into Sparse Subspace Clustering
    Xin, Bo
    Wang, Yizhou
    Gao, Wen
    Wipf, David
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (02) : 449 - 462
  • [44] Laplacian Embedded Sparse Subspace Clustering
    Yang, Bing
    Ji, Zexuan
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [45] Latent Space Sparse Subspace Clustering
    Patel, Vishal M.
    Hien Van Nguyen
    Vidal, Rene
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 225 - 232
  • [46] Graph Connectivity In Sparse Subspace Clustering
    Nasihatkon, Behrooz
    Hartley, Richard
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [47] Robust Multiview Subspace Clustering of Images via Tighter Rank Approximation
    Sun, Xiaoli
    Wang, Youjuan
    Yang, Ming
    Zhang, Xiujun
    [J]. IEEE ACCESS, 2021, 9 : 81173 - 81188
  • [48] Efficient Solvers for Sparse Subspace Clustering
    Pourkamali-Anaraki, Farhad
    Folberth, James
    Becker, Stephen
    [J]. SIGNAL PROCESSING, 2020, 172
  • [49] Sparse Subspace Clustering for Incomplete Images
    Wen, Xiao
    Qiao, Linbo
    Ma, Shiqian
    Liu, Wei
    Cheng, Hong
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 859 - 867
  • [50] Sparse Subspace Clustering for Stream Data
    Chen, Ken
    Tang, Yong
    Wei, Long
    Wang, Pengfei
    Liu, Yong
    Jin, Zhongming
    [J]. IEEE ACCESS, 2021, 9 : 57271 - 57279