Sparse subspace clustering via nonconvex approximation

被引:0
|
作者
Wenhua Dong
Xiao-Jun Wu
Josef Kittler
He-Feng Yin
机构
[1] Jiangnan University,School of Internet of Things
[2] University of Surrey,Centre for Vision, Speech and Signal Processing
来源
关键词
Sparse subspace clustering; -minimization; Nonconvex approximation; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
Among existing clustering methods, sparse subspace clustering (SSC) obtains superior clustering performance in grouping data points from a union of subspaces by solving a relaxed ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-minimization problem by ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document}-norm. The use of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document}-norm instead of the ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document} one can make the object function convex, while it also causes large errors on large coefficients in some cases. In this work, we propose using the nonconvex approximation to replace ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-norm for SSC, termed as SSC via nonconvex approximation (SSCNA), and develop a novel clustering algorithm with the enhanced sparsity based on the Alternating Direction Method of Multipliers. We further prove that the proposed nonconvex approximation is closer to ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-norm than the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} one and is bounded by ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-norm. Numerical studies show that the proposed nonconvex approximation helps to improve clustering performance. We also theoretically verify the convergence of the proposed algorithm with a three-variable objective function. Extensive experiments on four benchmark datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:165 / 176
页数:11
相关论文
共 50 条
  • [1] Sparse subspace clustering via nonconvex approximation
    Dong, Wenhua
    Wu, Xiao-Jun
    Kittler, Josef
    Yin, He-Feng
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2019, 22 (01) : 165 - 176
  • [2] A Nonconvex Implementation of Sparse Subspace Clustering: Algorithm and Convergence Analysis
    Deng, Xiaoge
    Sun, Tao
    Du, Peibing
    Li, Dongsheng
    [J]. IEEE ACCESS, 2020, 8 : 54741 - 54750
  • [3] AN ACCELERATED GRADIENT METHOD FOR NONCONVEX SPARSE SUBSPACE CLUSTERING PROBLEM
    Li, Hongwu
    Zhang, Haibin
    Xiao, Yunhai
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (02): : 265 - 280
  • [4] Probabilistic Subspace Clustering Via Sparse Representations
    Adler, Amir
    Elad, Michael
    Hel-Or, Yacov
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (01) : 63 - 66
  • [5] Subspace Clustering via Sparse Graph Regularization
    Zhang, Qiang
    Miao, Zhenjiang
    [J]. PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 214 - 219
  • [6] Single Image Super Resolution via Manifold Linear Approximation using Sparse Subspace Clustering
    Dang, Chinh T.
    Aghagolzadeh, M.
    Moghadam, A. A.
    Radha, Hayder
    [J]. 2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 949 - 952
  • [7] Sparse subspace clustering via smoothed lp minimization
    Dong, Wenhua
    Wu, Xiao-jun
    Kittler, Josef
    [J]. PATTERN RECOGNITION LETTERS, 2019, 125 : 206 - 211
  • [8] Accelerating Deep Convnets via Sparse Subspace Clustering
    Wang, Dong
    Shi, Shengge
    Bai, Xiao
    Zhang, Xueni
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 595 - 606
  • [9] Subspace Clustering via Structured Sparse Relation Representation
    Wei, Lai
    Ji, Fenfen
    Liu, Hao
    Zhou, Rigui
    Zhu, Changming
    Zhang, Xiafen
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 4610 - 4623
  • [10] Sparse Subspace Clustering
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2782 - 2789