On Intersections of Reed–Muller Like Codes

被引:0
|
作者
F. I. Solov’eva
机构
[1] Siberian Branch of the Russian Academy of Sciences,Sobolev Institute of Mathematics
来源
关键词
Reed–Muller code; Reed–Muller like code; code intersection problem; Pulatov codes; components of Reed–Muller codes; -component; switching; switching construction for codes;
D O I
暂无
中图分类号
学科分类号
摘要
A binary code that has the parameters and possesses the main properties of the classical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}th-order Reed–Muller code \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RM_{r,m}$$\end{document} will be called an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}th-order Reed–Muller like code and will be denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LRM_{r,m}$$\end{document}. The class of such codes contains the family of codes obtained by the Pulatov construction and also classical linear and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_4$$\end{document}-linear Reed–Muller codes. We analyze the intersection problem for the Reed–Muller like codes. We prove that for any even \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le k\le 2^{2\sum\limits_{i=0}^{r-1}\binom{m-1}{i}}$$\end{document} there exist \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LRM_{r,m}$$\end{document} codes of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^m$$\end{document} having intersection size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. We also prove that there exist two Reed–Muller like codes of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^m$$\end{document} whose intersection size is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k_1 k_2$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k_s\le |RM_{r-1,m-1}|$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in\{1,2\}$$\end{document}, for any admissible length starting from 16.
引用
收藏
页码:357 / 367
页数:10
相关论文
共 50 条
  • [41] Minimum distance of relative Reed–Muller codes
    Tohru Nakashima
    Applicable Algebra in Engineering, Communication and Computing, 2009, 20 : 123 - 132
  • [42] Spherically Punctured Reed-Muller Codes
    Kapralova, Olga
    Dumer, Ilya
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1047 - 1051
  • [43] On the stopping redundancy of Reed-Muller codes
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 4867 - 4879
  • [44] A hybrid decoding of Reed-Muller codes
    Li, Shuang
    Zhang, Shicheng
    Chen, Zhenxing
    Kang, Seog Geun
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (02):
  • [45] Optimal Testing of Reed-Muller Codes
    Bhattacharyya, Arnab
    Kopparty, Swastik
    Schoenebeck, Grant
    Sudan, Madhu
    Zuckerman, David
    PROPERTY TESTING: CURRENT RESEARCH AND SURVEYS, 2010, 6390 : 269 - +
  • [46] ON GENERALIZED REED-MULLER CODES AND THEIR RELATIVES
    DELSARTE, P
    GOETHALS, JM
    MACWILLI.FJ
    INFORMATION AND CONTROL, 1970, 16 (05): : 403 - &
  • [47] ON THE COVERING RADIUS OF REED-MULLER CODES
    COHEN, GD
    LITSYN, SN
    DISCRETE MATHEMATICS, 1992, 106 : 147 - 155
  • [48] Homomorphic Computation in Reed-Muller Codes
    Cho, Jinkyu
    Kim, Young-Sik
    No, Jong-Seon
    IEEE ACCESS, 2020, 8 : 108622 - 108628
  • [49] On trellis structures for Reed-Muller codes
    Blackmore, T
    Norton, GH
    FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (01) : 39 - 70
  • [50] Extractors from Reed-Muller codes
    Ta-Shma, Amnon
    Zuckerman, David
    Safra, Shmuel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (05) : 786 - 812