On Intersections of Reed–Muller Like Codes

被引:0
|
作者
F. I. Solov’eva
机构
[1] Siberian Branch of the Russian Academy of Sciences,Sobolev Institute of Mathematics
来源
关键词
Reed–Muller code; Reed–Muller like code; code intersection problem; Pulatov codes; components of Reed–Muller codes; -component; switching; switching construction for codes;
D O I
暂无
中图分类号
学科分类号
摘要
A binary code that has the parameters and possesses the main properties of the classical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}th-order Reed–Muller code \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RM_{r,m}$$\end{document} will be called an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}th-order Reed–Muller like code and will be denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LRM_{r,m}$$\end{document}. The class of such codes contains the family of codes obtained by the Pulatov construction and also classical linear and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_4$$\end{document}-linear Reed–Muller codes. We analyze the intersection problem for the Reed–Muller like codes. We prove that for any even \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} in the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le k\le 2^{2\sum\limits_{i=0}^{r-1}\binom{m-1}{i}}$$\end{document} there exist \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LRM_{r,m}$$\end{document} codes of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^m$$\end{document} having intersection size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. We also prove that there exist two Reed–Muller like codes of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^m$$\end{document} whose intersection size is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k_1 k_2$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k_s\le |RM_{r-1,m-1}|$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in\{1,2\}$$\end{document}, for any admissible length starting from 16.
引用
收藏
页码:357 / 367
页数:10
相关论文
共 50 条
  • [1] On Intersections of Reed-Muller Like Codes
    Solov'eva, F., I
    PROBLEMS OF INFORMATION TRANSMISSION, 2021, 57 (04) : 357 - 367
  • [2] Reed-Muller codes on complete intersections
    Duursma, IM
    Rentería, C
    Tapia-Recillas, H
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 11 (06) : 455 - 462
  • [3] Reed-Muller Codes on Complete Intersections
    I. M. Duursma
    C. Rentería
    H. Tapia-Recillas
    Applicable Algebra in Engineering, Communication and Computing, 2001, 11 : 455 - 462
  • [4] Reed-Muller Codes
    Abbe, Emmanuel
    Sberlo, Ori
    Shpilka, Amir
    Ye, Min
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2023, 20 (1-2): : 1 - 156
  • [5] ON THE REED-MULLER CODES
    ASSMUS, EF
    DISCRETE MATHEMATICS, 1992, 106 : 25 - 33
  • [6] Basic Reed–Muller Codes as Group Codes
    Tumaykin I.N.
    Journal of Mathematical Sciences, 2015, 206 (6) : 699 - 710
  • [7] On Viterbi-like algorithms and their application to Reed-Muller codes
    Tang, YS
    Ling, S
    JOURNAL OF COMPLEXITY, 2004, 20 (2-3) : 438 - 457
  • [8] Ideal representation of Reed–Solomon and Reed–Muller codes
    E. Couselo
    S. González
    V. T. Markov
    C. Martínez
    A. A. Nechaev
    Algebra and Logic, 2012, 51 : 195 - 212
  • [9] Testing Reed-Muller codes
    Alon, N
    Kaufman, T
    Krivelevich, M
    Litsyn, S
    Ron, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 4032 - 4039
  • [10] PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 125 - 129