Linear gravity waves on Maxwell fluids of finite depth

被引:0
|
作者
Zhang Qinghe
Sun Yabin
机构
[1] Tianjin University,School of Civil Engineering
关键词
Maxwell fluid; linear gravity wave; finite depth; dispersion relation;
D O I
10.1007/BF02485864
中图分类号
学科分类号
摘要
Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper. A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived. A dimensionless memory (time) number θ is introduced. The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0. The complex dispersion equation is numerically solved to investigate the dispersion relation. The influences of θ and water depth on the dispersion characteristics and wave decay are discussed. It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.
引用
收藏
页码:607 / 612
页数:5
相关论文
共 50 条
  • [1] Linear gravity waves on Maxwell fluids of finite depth
    Zhang, QH
    Sun, YB
    [J]. ACTA MECHANICA SINICA, 2004, 20 (06) : 607 - 612
  • [2] LINEAR GRAVITY WAVES ON MAXWELL FLUIDS OF FINITE DEPTH
    张庆河
    孙亚斌
    [J]. Acta Mechanica Sinica, 2004, 20 (06) : 607 - 612
  • [3] EHD envelope solitons of capillary-gravity waves in fluids of finite depth
    El-Sayed, MF
    Callebaut, DK
    [J]. PHYSICA SCRIPTA, 1998, 57 (02) : 161 - 170
  • [4] KAM for gravity water waves in finite depth
    Baldi, Pietro
    Berti, Massimiliano
    Haus, Emanuele
    Montalto, Riccardo
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (02) : 215 - 236
  • [5] Effects of viscosity on linear gravity waves due to surface disturbances in water of finite depth
    Bandyopadhyay, A
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (03): : 205 - 213
  • [6] LINEAR-THEORY OF GRAVITY-WAVES ON A MAXWELL FLUID
    SAASEN, A
    TYVAND, PA
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1990, 34 (02) : 207 - 219
  • [7] Approximation for the highest gravity waves on water of finite depth
    Lavrentyev Inst of Hydrodynamics, Novosibirsk, Russia
    [J]. J Fluid Mech, (45-70):
  • [8] An approximation for the highest gravity waves on water of finite depth
    Karabut, EA
    [J]. JOURNAL OF FLUID MECHANICS, 1998, 372 : 45 - 70
  • [9] Finite Depth Gravity Water Waves in Holomorphic Coordinates
    Harrop-Griffiths B.
    Ifrim M.
    Tataru D.
    [J]. Annals of PDE, 3 (1)
  • [10] Evolution of modulated gravity waves in water of finite depth
    Rollins, DK
    Shivamoggi, BK
    [J]. PHYSICA SCRIPTA, 1998, 57 (01): : 28 - 31