Griffiths variational multisymplectic formulation for Lovelock gravity

被引:0
|
作者
S. Capriotti
J. Gaset
N. Román-Roy
L. Salomone
机构
[1] Universidad Nacional del Sur,Departamento de Matemática and CONICET
[2] Universitat Autònoma de Barcelona,Department of Physics
[3] Universitat Politècnica de Catalunya,Department of Mathematics
[4] UNLP,Departamento de Matemática
来源
关键词
Field theory; Lagrangian and Hamiltonian formalisms; Jet bundles; Multisymplectic manifolds; Griffiths variational problem; Lovelock gravity; Hilbert–Einstein and Einstein–Palatini actions; Einstein equations; Primary 49S05; 70S05; 83D05; Secondary 35Q75; 35Q76; 53D42; 55R10;
D O I
暂无
中图分类号
学科分类号
摘要
This work is mainly devoted to constructing a multisymplectic description of Lovelock’s gravity, which is an extension of General Relativity. We establish the Griffiths variational problem for the Lovelock Lagrangian, obtaining the geometric form of the corresponding field equations. We give the unified Lagrangian–Hamiltonian formulation of this model and we study the correspondence between the unified formulations for the Einstein–Hilbert and the Einstein–Palatini models of gravity.
引用
收藏
相关论文
共 50 条
  • [31] Wormhole solution in Lovelock gravity theory
    Shang, YW
    Xu, JJ
    [J]. CHINESE PHYSICS LETTERS, 1999, 16 (02) : 85 - 87
  • [32] Geometrodynamics of spherically symmetric Lovelock gravity
    Kunstatter, Gabor
    Taves, Tim
    Maeda, Hideki
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (09)
  • [33] Dynamical structure of pure Lovelock gravity
    Dadhich, Naresh
    Durka, Remigiusz
    Merino, Nelson
    Miskovic, Olivera
    [J]. PHYSICAL REVIEW D, 2016, 93 (06)
  • [34] Birkhoff's theorem in Lovelock gravity
    Zegers, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (07)
  • [35] On black strings & branes in Lovelock gravity
    Kastor, D
    Mann, R
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (04):
  • [36] Symmetry breaking vacua in Lovelock gravity
    Kastor, David
    Sentuerk, Cetin
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (18)
  • [37] Lanczos-Lovelock models of gravity
    Padmanabhan, T.
    Kothawala, D.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 531 (03): : 115 - 171
  • [38] C-functions in Lovelock gravity
    Anber, Mohamed M.
    Kastor, David
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05):
  • [39] Lovelock gravity from entropic force
    A. Sheykhi
    H. Moradpour
    N. Riazi
    [J]. General Relativity and Gravitation, 2013, 45 : 1033 - 1049
  • [40] Thin shell dynamics in Lovelock gravity
    Guilleminot, Pablo
    Merino, Nelson
    Olea, Rodrigo
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (11):