Griffiths variational multisymplectic formulation for Lovelock gravity

被引:0
|
作者
S. Capriotti
J. Gaset
N. Román-Roy
L. Salomone
机构
[1] Universidad Nacional del Sur,Departamento de Matemática and CONICET
[2] Universitat Autònoma de Barcelona,Department of Physics
[3] Universitat Politècnica de Catalunya,Department of Mathematics
[4] UNLP,Departamento de Matemática
来源
关键词
Field theory; Lagrangian and Hamiltonian formalisms; Jet bundles; Multisymplectic manifolds; Griffiths variational problem; Lovelock gravity; Hilbert–Einstein and Einstein–Palatini actions; Einstein equations; Primary 49S05; 70S05; 83D05; Secondary 35Q75; 35Q76; 53D42; 55R10;
D O I
暂无
中图分类号
学科分类号
摘要
This work is mainly devoted to constructing a multisymplectic description of Lovelock’s gravity, which is an extension of General Relativity. We establish the Griffiths variational problem for the Lovelock Lagrangian, obtaining the geometric form of the corresponding field equations. We give the unified Lagrangian–Hamiltonian formulation of this model and we study the correspondence between the unified formulations for the Einstein–Hilbert and the Einstein–Palatini models of gravity.
引用
收藏
相关论文
共 50 条
  • [1] Griffiths variational multisymplectic formulation for Lovelock gravity
    Capriotti, S.
    Gaset, J.
    Roman-Roy, N.
    Salomone, L.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (08)
  • [2] Variational Formulation for the Multisymplectic Hamiltonian Systems
    Jing-Bo Chen
    [J]. Letters in Mathematical Physics, 2005, 71 : 243 - 253
  • [3] Variational formulation for the multisymplectic Hamiltonian systems
    Chen, JB
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2005, 71 (03) : 243 - 253
  • [4] Multisymplectic Hamiltonian variational integrators
    Tran, Brian
    Leok, Melvin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (01) : 113 - 157
  • [5] Multisymplectic structures and the variational bicomplex
    Bridges, Thomas J.
    Hydon, Peter E.
    Lawson, Jeffrey K.
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 159 - 178
  • [6] Regularized Lovelock gravity
    Casalino, Alessandro
    Colleaux, Aimeric
    Rinaldi, Massimiliano
    Vicentini, Silvia
    [J]. PHYSICS OF THE DARK UNIVERSE, 2021, 31
  • [7] Cosmological wormholes in Lovelock gravity
    Mehdizadeh, M. R.
    Riazi, N.
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [8] Teleparallel equivalent of Lovelock gravity
    Gonzalez, P. A.
    Vasquez, Yerko
    [J]. PHYSICAL REVIEW D, 2015, 92 (12):
  • [9] Quasilinear reformulation of Lovelock gravity
    Willison, Steven
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (09):
  • [10] Perturbations in Regularized Lovelock Gravity
    Casalino, Alessandro
    Sebastiani, Lorenzo
    [J]. PHYSICS OF THE DARK UNIVERSE, 2021, 31