Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries co-modified by lanthanum and aluminum

被引:0
|
作者
Yongqing Tang
Shijuan Chen
机构
[1] Sichuan Police College,
[2] Tianjin Jinniu Power Sources Material Co.,undefined
[3] Ltd.,undefined
来源
Ionics | 2021年 / 27卷
关键词
Lithium-rich; 3LaAlO; :Al; O; Coating; Lithium-ion batteries;
D O I
暂无
中图分类号
学科分类号
摘要
As one of the most promising for the next-generation cathode material, the lithium-rich cathode is mainly suffering from severe capacity fading and voltage drop. Herein, the Li1.2Mn0.54Ni0.13Co0.13O2 cathode material co-modified by lanthanum and aluminum, i.e., 3LaAlO3:Al2O3, has been successfully achieved by sol-gel method. The Li1.2Mn0.54Ni0.13Co0.13O2 cathode with 3 wt% of 3LaAlO3:Al2O3 (LR-NMC@0.03) delivers an initial discharge capacity of 242.3 mAh g−1 at 1.0C with a corresponding capacity retention of 91.7% after 200 cycles, far higher than those (217.7 mAh g−1 and 72.8%) of the pristine sample. What is more important is that the capacity retention can increase from 42.9 to 83.5% even at 5.0C after 200 cycles. Specially, the voltage drop has been relieved by the 3LaAlO3:Al2O3 coating layer. The 3LaAlO3:Al2O3 applied in Li-rich cathode material has been demonstrated to be a feasible surface modification method to construct high-energy and high-power Li-ion batteries.
引用
收藏
页码:935 / 948
页数:13
相关论文
共 50 条
  • [11] Improved electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries
    Yang, Shunyi
    Huang, Guo
    Hu, Shejun
    Hou, Xianhua
    Huang, Youyuan
    Yue, Min
    Lei, Gangtie
    MATERIALS LETTERS, 2014, 118 : 8 - 11
  • [12] Effect of Na Doping on the Electrochemical Performance of Li1.2Ni0.13Co0.13Mn0.54O2 Cathode for Lithium-Ion Batteries
    Hashem, Ahmed M.
    Abdel-Ghany, Ashraf E.
    El-Tawil, Rasha S.
    Mauger, Alain
    Julien, Christian M.
    SUSTAINABLE CHEMISTRY, 2022, 3 (02): : 131 - 148
  • [13] Li1.2Mn0.54Ni0.13Co0.13O2 nanosheets with porous structure as a high-performance cathode material for lithium-ion batteries
    Gao, Zhi
    Sun, Wenliang
    Pan, Xiaoliang
    Xie, Shikun
    Liu, Lijun
    Xie, Chengning
    Yuan, Huiling
    RSC ADVANCES, 2021, 11 (58) : 36588 - 36595
  • [14] Hierarchical microspheres and nanoscale particles: Effects of morphology on electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries
    Wu, Feng
    Wang, Hui
    Bai, Ying
    Li, Yu
    Wu, Chuan
    Chen, Guanghai
    Liu, Lu
    Ni, Qiao
    Wang, Xinquan
    Zhou, Jiang
    SOLID STATE IONICS, 2017, 300 : 149 - 156
  • [15] A new doping element to improve the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 materials for Li-ion batteries
    Sun, Yingying
    Wu, Qing
    Zhao, Li
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 1339 - 1347
  • [16] An ingenious design of lamellar Li1.2Mn0.54Ni0.13Co0.13O2 hollow nanosphere cathode for advanced lithium-ion batteries
    Zhang, Yao
    Zhang, Wansen
    Shen, Shuiyun
    Yan, Xiaohui
    Wu, Aiming
    Wu, Ruofei
    Zhang, Junliang
    ELECTROCHIMICA ACTA, 2017, 256 : 316 - 324
  • [17] Glucose-based surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material for lithium-ion batteries
    Li, Ke
    Yuan, Zewei
    Yu, Haoran
    Xia, Kai
    Jiang, Guodong
    Xiong, Jian
    Yuan, Songdong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (02):
  • [18] Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with bamboo essential oil
    Changkun Song
    Wangjun Feng
    Xuan Wang
    Zhaojiao Shi
    Ionics, 2020, 26 : 661 - 672
  • [19] Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with bamboo essential oil
    Song, Changkun
    Feng, Wangjun
    Wang, Xuan
    Shi, Zhaojiao
    IONICS, 2020, 26 (02) : 661 - 672
  • [20] Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material
    Xu, Hongjie
    Deng, Shengnan
    Chen, Guohua
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (36) : 15015 - 15021