New preconditioners for systems of linear equations with Toeplitz structure

被引:0
|
作者
Yong-Jie Shi
Xue-Bo Pi
机构
[1] Shantou University,Department of Mathematics
来源
Calcolo | 2014年 / 51卷
关键词
BTTB matrix; Generating function; Generalized Jackson kernel; Preconditioner; PCG method; 65F10; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider applying the preconditioned conjugate gradient (PCG) method to solve system of linear equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T x = \mathbf b $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} is a block Toeplitz matrix with Toeplitz blocks (BTTB). We first consider Level-2 circulant preconditioners based on generalized Jackson kernels. Then, BTTB preconditioners based on a splitting of BTTB matrices are proposed. We show that the BTTB preconditioners based on splitting are special cases of embedding-based BTTB preconditioners, which are also good BTTB preconditioners. As an application, we apply the proposed preconditioners to solve BTTB least squares problems. Our preconditioners work for BTTB systems with nonnegative generating functions. The implementations of the construction of the preconditioners and the relevant matrix-vector multiplications are also presented. Finally, Numerical examples, including image restoration problems, are presented to demonstrate the efficiency of our proposed preconditioners.
引用
收藏
页码:31 / 55
页数:24
相关论文
共 50 条
  • [31] A multicore solution to Block–Toeplitz linear systems of equations
    Pedro Alonso
    Daniel Argüelles
    José Ranilla
    Antonio M. Vidal
    The Journal of Supercomputing, 2013, 65 : 999 - 1009
  • [32] Parallel algorithms for the solution of Toeplitz systems of linear equations
    Alonso, P
    Badía, JM
    Vidal, AM
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2004, 3019 : 969 - 976
  • [33] FAST BAND-TOEPLITZ PRECONDITIONERS FOR HERMITIAN TOEPLITZ-SYSTEMS
    CHAN, RH
    TANG, PTP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01): : 164 - 171
  • [34] Inverse product Toeplitz preconditioners for non-Hermitian Toeplitz systems
    Lin, Fu-Rong
    Ng, Michael K.
    NUMERICAL ALGORITHMS, 2010, 54 (02) : 279 - 295
  • [35] Tensorized low-rank circulant preconditioners for multilevel Toeplitz linear systems from high-dimensional fractional Riesz equations
    Zhang, Lei
    Zhang, Guo-Feng
    Liang, Zhao-Zheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 110 : 64 - 76
  • [36] A fast stable solver for nonsymmetric Toeplitz and quasi-Toeplitz systems of linear equations
    Chandrasekaran, S
    Sayed, AH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) : 107 - 139
  • [38] Sine transform based preconditioners for symmetric Toeplitz systems
    Chan, RH
    Ng, MK
    Wong, CK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 232 : 237 - 259
  • [39] Factorized banded inverse preconditioners for matrices with Toeplitz structure
    Lin, FR
    Mg, MK
    Ching, WK
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06): : 1852 - 1870
  • [40] BCCB preconditioners for solving linear systems from delay differential equations
    Cai, MC
    Jin, XQ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (1-2) : 281 - 288