New preconditioners for systems of linear equations with Toeplitz structure

被引:0
|
作者
Yong-Jie Shi
Xue-Bo Pi
机构
[1] Shantou University,Department of Mathematics
来源
Calcolo | 2014年 / 51卷
关键词
BTTB matrix; Generating function; Generalized Jackson kernel; Preconditioner; PCG method; 65F10; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider applying the preconditioned conjugate gradient (PCG) method to solve system of linear equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T x = \mathbf b $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} is a block Toeplitz matrix with Toeplitz blocks (BTTB). We first consider Level-2 circulant preconditioners based on generalized Jackson kernels. Then, BTTB preconditioners based on a splitting of BTTB matrices are proposed. We show that the BTTB preconditioners based on splitting are special cases of embedding-based BTTB preconditioners, which are also good BTTB preconditioners. As an application, we apply the proposed preconditioners to solve BTTB least squares problems. Our preconditioners work for BTTB systems with nonnegative generating functions. The implementations of the construction of the preconditioners and the relevant matrix-vector multiplications are also presented. Finally, Numerical examples, including image restoration problems, are presented to demonstrate the efficiency of our proposed preconditioners.
引用
收藏
页码:31 / 55
页数:24
相关论文
共 50 条