The Collatz conjecture and the quantum mechanical harmonic oscillator

被引:0
|
作者
Carlos Castro Perelman
Ramon Carbó-Dorca
机构
[1] Clark Atlanta University,Center for Theoretical Studies of Physical Systems
[2] Ronin Institute,Institute of Computational Chemistry and Catalysis
[3] Universitat de Girona,undefined
来源
关键词
Collatz conjecture; Qantum mechanics; Quantum oscillator;
D O I
暂无
中图分类号
学科分类号
摘要
By establishing a dictionary between the QM harmonic oscillator and the Collatz process, it reveals very important clues as to why the Collatz conjecture most likely is true. The dictionary requires expanding any integer n into a binary basis (bits) n=∑anl2l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \sum a_{nl} 2^l$$\end{document} (l ranges from 0 to N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N - 1$$\end{document}) that allows to find the correspondence between every integer n and the state |Ψn⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\Psi _n \rangle$$\end{document}, obtained by a superposition of bit states |l⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|l \rangle$$\end{document}, and which are related to the energy eigenstates of the QM harmonic oscillator. In doing so, one can then construct the one-to-one correspondence between the Collatz iterations of numbers n→n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow { n \over 2 }$$\end{document} (n even); n→3n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow 3 n + 1$$\end{document} (n odd) and the operators Ln2;L3n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}_{{ n \over 2}}; \mathbf{L}_{ 3 n + 1 }$$\end{document}, which map Ψn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _n$$\end{document} to Ψn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _{{ n \over 2 }}$$\end{document}, or to Ψ3n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _{ 3 n + 1 }$$\end{document}, respectively, and which are constructed explicitly in terms of the creation a†\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{a}^{\dagger }$$\end{document}, annihilation a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{a }$$\end{document}, and unit operator 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{1 }$$\end{document} of the QM harmonic oscillator. A rigorous analysis reveals that the Collatz conjecture is most likely true, if the composition of a chain of Ln2;L3n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}_{{ n \over 2}}; \mathbf{L}_{ 3 n + 1 }$$\end{document} operators (written as L∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_*$$\end{document} in condensed notation) leads to the null-eigenfunction conditions (L∗L∗…L∗-P)Ψn=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbf{L_* L_* \ldots L_* } - {{\mathcal {P}}} ) \Psi _n = 0$$\end{document}, where P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document} is the operator that projects any state Ψn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _n$$\end{document} into the ground state Ψ1≡|0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _1 \equiv | 0 \rangle$$\end{document} representing the zero bit state |0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|0 \rangle$$\end{document} (since 20=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^0 = 1$$\end{document}). In essence, one has a realization of the integer/state correspondence typical of QM such that the Collatz paths from n to 1 are encoded in terms of quantum transitions among the states Ψn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _n$$\end{document}, and leading effectively to an overall downward cascade to Ψ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _1$$\end{document}. The QM oscillator approach explains naturally why the Collatz conjecture fails for negative integers because there are no states below the ground state.
引用
收藏
页码:145 / 160
页数:15
相关论文
共 50 条
  • [41] KAM for the Quantum Harmonic Oscillator
    Grebert, Benoit
    Thomann, Laurent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 383 - 427
  • [42] Discrete Quantum Harmonic Oscillator
    Dobrogowska, Alina
    Fernandez C, David J.
    SYMMETRY-BASEL, 2019, 11 (11):
  • [43] Quantum Harmonic Oscillator Sonification
    Saranti, Anna
    Eckel, Gerhard
    Pirro, David
    AUDITORY DISPLAY, 2010, 5954 : 184 - 201
  • [44] The Collatz conjecture and De Bruijn graphs
    Laarhoven, Thijs
    de Weger, Benne
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (04): : 971 - 983
  • [45] Some extensions of Collatz (periodic) conjecture
    Du, Zhibin
    Huang, Yinhao
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 475
  • [46] A New Approach on Proving Collatz Conjecture
    Ren, Wei
    JOURNAL OF MATHEMATICS, 2019, 2019
  • [47] On the Probabilistic Proof of the Convergence of the Collatz Conjecture
    Barghout, Kamal
    JOURNAL OF PROBABILITY AND STATISTICS, 2019, 2019
  • [48] A linear algebra approach to the conjecture of Collatz
    Alves, JF
    Graça, MM
    Dias, MES
    Ramos, JS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 394 : 277 - 289
  • [49] Collatz conjecture revisited: an elementary generalization
    Gutierrez, Amauri
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (01) : 112 - 127
  • [50] Functional Analysis Approach to the Collatz Conjecture
    Neklyudov, Mikhail
    RESULTS IN MATHEMATICS, 2024, 79 (04)