Polynomial values free of large prime factors

被引:3
|
作者
Cécile Dartyge
Gérald Tenenbaum
Greg Martin
机构
[1] Université Henri Poincaré-Nancy 1,Institut Élie Cartan
[2] University of Toronto,Department of Mathematics
关键词
Positive Integer; Lower Bound; Prime Factor; Analogous Result; Suitable Power;
D O I
10.1023/A:1015237700066
中图分类号
学科分类号
摘要
For F ∈ Z [ X], let &PSgr; F (x, y) denote the number of positive integers n not exceeding x such that F(n) is free of prime factors > y. Our main purpose is to obtain lower bounds of the form &PSgr; (x, y) >> x for arbitrary F and for y equal to a suitable power of x. Our proofs rest on some results and methods of two articles by the third author concerning localization of divisors of polynomial values. Analogous results for the polynomial values at prime arguments are also obtained.
引用
下载
收藏
页码:111 / 119
页数:8
相关论文
共 50 条
  • [21] POWER-FREE VALUES OF A POLYNOMIAL
    UCHIYAMA, S
    TENSOR, 1972, 24 : 43 - 48
  • [22] Quantitative Hilbert Irreducibility and Almost Prime Values of Polynomial Discriminants
    Anderson, Theresa C.
    Gafni, Ayla
    Lemke Oliver, Robert J.
    Lowry-Duda, David
    Shakan, George
    Zhang, Ruixiang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021,
  • [23] A Polynomial Model for Logics with a Prime Power Number of Truth Values
    Hernando, Antonio
    Roanes-Lozano, Eugenio
    Laita, Luis M.
    JOURNAL OF AUTOMATED REASONING, 2011, 46 (02) : 205 - 221
  • [24] Quantitative Hilbert Irreducibility and Almost Prime Values of Polynomial Discriminants
    Anderson, Theresa C.
    Gafni, Ayla
    Lemke Oliver, Robert J.
    Lowry-Duda, David
    Shakan, George
    Zhang, Ruixiang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (03) : 2188 - 2214
  • [25] Greatest prime divisors of polynomial values over function fields
    Entin, Alexei
    ACTA ARITHMETICA, 2014, 165 (04) : 339 - 349
  • [26] A Polynomial Model for Logics with a Prime Power Number of Truth Values
    Antonio Hernando
    Eugenio Roanes-Lozano
    Luis M. Laita
    Journal of Automated Reasoning, 2011, 46 : 205 - 221
  • [27] INTEGERS WITH NO LARGE PRIME FACTORS
    XUAN, TZ
    ACTA ARITHMETICA, 1995, 69 (04) : 303 - 327
  • [28] Solvability of systems of polynomial congruences modulo a large prime
    Huang, MD
    Wong, YC
    COMPUTATIONAL COMPLEXITY, 1999, 8 (03) : 227 - 257
  • [29] SIEVING BY LARGE PRIME FACTORS
    WARLIMONT, R
    MONATSHEFTE FUR MATHEMATIK, 1990, 109 (03): : 247 - 256
  • [30] Solvability of systems of polynomial congruences modulo a large prime
    M.-D. Huang
    Y.-C. Wong
    computational complexity, 1999, 8 : 227 - 257