Inertial manifold for the motion of strongly damped nonlinear elastic beams

被引:0
|
作者
Giselle Bianchi
Alfredo Marzocchi
机构
[1] Dipartimento di Elettronica per l'Automazione,
[2] Università degli Studi di Brescia,undefined
[3] I-25124 Brescia,undefined
[4] Italy,undefined
[5] Dipartimento di Matematica,undefined
[6] Università Cattolica del S. Cuore,undefined
[7] I-25121 Brescia,undefined
[8] Italy,undefined
关键词
Hilbert Space; Vector Space; Numerical Estimate; Elastic Beam; Inertial Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a strongly damped semilinear equation arising in the theory of elastic beams. We prove the existence of an exponentially attracting finite-dimensional vector space in the Hilbert space of the solutions (a so-called inertial manifold), and provide some numerical estimates of the dimension of the manifold.
引用
收藏
页码:181 / 192
页数:11
相关论文
共 50 条
  • [1] Inertial manifold for the motion of strongly damped nonlinear elastic beams
    Bianchi, Giselle
    Marzocchi, Alfredo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (02): : 181 - 192
  • [2] Decay rates of strongly damped infinite laminated beams
    Bautista, G. J.
    Cabanillas, V. R.
    Potenciano-Machado, L.
    Mendez, T. Quispe
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (02)
  • [3] NONLINEAR DAMPED VIBRATION OF BEAMS WITH PERIODIC FORCING
    COUNTRYMAN, M
    KANNAN, R
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1992, 27 (01) : 75 - 83
  • [4] Inertial and elastic properties of general composite beams
    Yu, Wenbin
    COMPOSITE STRUCTURES, 2025, 352
  • [5] Nonlinear reflectivity of an inhomogeneous plasma in the strongly damped regime
    Mounaix, P
    Pesme, D
    Casanova, M
    PHYSICAL REVIEW E, 1997, 55 (04): : 4653 - 4664
  • [7] Attractor for a strongly damped lattice system with nonlinear damping
    Li, Hongyan
    Rui, Zhang
    2018 IEEE 15TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE 2018), 2018, : 300 - 305
  • [8] ASYMPTOTIC BEHAVIOR OF STRONGLY DAMPED NONLINEAR BEAM EQUATIONS
    Abdallah, Ahmed Y.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (04) : 1071 - 1088
  • [9] Transitions from Strongly to Weakly Nonlinear Motions of Damped Nonlinear Oscillators
    G. Salenger
    A. F. Vakakis
    Oleg Gendelman
    Leonid Manevitch
    Igor Andrianov
    Nonlinear Dynamics, 1999, 20 : 99 - 114
  • [10] Transitions from strongly to weakly nonlinear motions of damped nonlinear oscillators
    Salenger, G
    Vakakis, AF
    Gendelman, O
    Manevitch, L
    Andrianov, I
    NONLINEAR DYNAMICS, 1999, 20 (02) : 99 - 114