Decay rates of strongly damped infinite laminated beams

被引:0
|
作者
Bautista, G. J. [1 ]
Cabanillas, V. R. [2 ,3 ]
Potenciano-Machado, L. [1 ]
Mendez, T. Quispe [3 ]
机构
[1] Univ Tecnol los Andes, Escuela Profes Ingn Civil, Fac Ingn, Sede Abancay, Apurimac, Peru
[2] Univ Lima, Programa Estudios Gen, Av Javier Prado Este 4600, Lima 15023, Peru
[3] Univ Nacl Mayor San Marcos, Fac Ciencias Matemat, Calle German Amezaga 375, Lima 15081, Peru
关键词
Asymptotic behavior; Energy method; Fourier analysis; Laminated beams; Kelvin-Voigt damping; REGULARITY-LOSS TYPE; TIMOSHENKO SYSTEM; EXPONENTIAL STABILIZATION; PAST HISTORY; STABILITY; PROPERTY;
D O I
10.1016/j.jmaa.2024.128229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stability of a Timoshenko laminated beam model with Kelvin-Voigt dampings. We consider both the case of the fully damped and partially damped system in which two dampings are effective on the system. Using the energy method, Fourier analysis and the construction of functionals with suitable weights, we obtain exponential and polynomial decay estimates for the solution of the system and its higher-order derivatives. The polynomial decay rates obtained depend on the regularity of the initial data and vary according to the position of the damping terms. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Improved decay of solution for strongly damped nonlinear wave equations
    Luo, Yongbing
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (03) : 4865 - 4876
  • [2] ON THE AMPLITUDE DECAY OF STRONGLY NON-LINEAR DAMPED OSCILLATORS
    BURTON, TD
    JOURNAL OF SOUND AND VIBRATION, 1983, 87 (04) : 535 - 541
  • [3] Laminated Timoshenko beams with interfacial slip and infinite memories
    Guesmia, Aissa
    Munoz Rivera, Jaime E.
    Sepulveda Cortes, Mauricio A.
    Vera Villagran, Octavio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (08) : 4408 - 4427
  • [4] Inertial manifold for the motion of strongly damped nonlinear elastic beams
    Bianchi, Giselle
    Marzocchi, Alfredo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (02): : 181 - 192
  • [5] Inertial manifold for the motion of strongly damped nonlinear elastic beams
    Giselle Bianchi
    Alfredo Marzocchi
    Nonlinear Differential Equations and Applications NoDEA, 1998, 5 : 181 - 192
  • [6] Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source
    Ma, Lingwei
    Fang, Zhong Bo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2639 - 2653
  • [7] General Decay Rates for a Laminated Beam with Memory
    Chen, Zhijing
    Liu, Wenjun
    Chen, Dongqin
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05): : 1227 - 1252
  • [8] Sharp Exponential Decay Rates for Anisotropically Damped Waves
    Blake Keeler
    Perry Kleinhenz
    Annales Henri Poincaré, 2023, 24 : 1561 - 1595
  • [9] Sharp Exponential Decay Rates for Anisotropically Damped Waves
    Keeler, Blake
    Kleinhenz, Perry
    ANNALES HENRI POINCARE, 2023, 24 (05): : 1561 - 1595
  • [10] Optimal decay ratio of damped slowly rotating Timoshenko beams
    Wozniak, J.
    Firkowski, M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (10):