Wave-type threshold dynamics and the hyperbolic mean curvature flow

被引:0
|
作者
Elliott Ginder
Karel Svadlenka
机构
[1] Hokkaido University,Research Institute for Electronic Science
[2] Kyoto University,Department of Mathematics
关键词
Hyperbolic curvature flow; Interfacial dynamics; Approximation method; 35L; 14J70; 53C44; 74S;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a method for computing interfacial motions governed by curvature dependent acceleration. Our method is a thresholding algorithm of the MBO-type which, instead of utilizing a diffusion process, thresholds evolution by the wave equation to obtain the desired interfacial dynamics. We also develop the numerical method and present results of its application, including investigations of volume preserving and multiphase motions.
引用
收藏
页码:501 / 523
页数:22
相关论文
共 50 条
  • [1] Wave-type threshold dynamics and the hyperbolic mean curvature flow
    Ginder, Elliott
    Svadlenka, Karel
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 33 (02) : 501 - 523
  • [2] Hyperbolic mean curvature flow
    He, Chun-Lei
    Kong, De-Xing
    Liu, Kefeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 373 - 390
  • [3] The hyperbolic mean curvature flow
    LeFloch, Philippe G.
    Smoczyk, Knut
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (06): : 591 - 614
  • [4] Hyperbolic flow by mean curvature
    Rotstein, Horacio G.
    Brandon, Simon
    Novick-Cohen, Amy
    Journal of Crystal Growth, 1999, 198-199 (pt 2): : 1256 - 1261
  • [5] Hyperbolic flow by mean curvature
    Rotstein, HG
    Brandon, S
    Novick-Cohen, A
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 1256 - 1261
  • [6] Effect of wave-type mean flow on the modulational process of zonal flow instability
    Uzawa, Ken
    Kishimoto, Yasuaki
    Li, Jiquan
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (03)
  • [7] Hyperbolic Inverse Mean Curvature Flow
    Mao, Jing
    Wu, Chuan-Xi
    Zhou, Zhe
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 33 - 66
  • [8] Hyperbolic Inverse Mean Curvature Flow
    Jing Mao
    Chuan-Xi Wu
    Zhe Zhou
    Czechoslovak Mathematical Journal, 2020, 70 : 33 - 66
  • [9] Mean curvature flow of a hyperbolic surface
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 2011, 113 : 1063 - 1070
  • [10] Mean Curvature Flow of a Hyperbolic Surface
    Ovchinnikov, Yu. N.
    Sigal, I. M.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2011, 113 (06) : 1063 - 1070