首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
More on quadratic functions and maximal Artin–Schreier curves
被引:0
|
作者
:
Nurdagül Anbar
论文数:
0
引用数:
0
h-index:
0
机构:
Max Planck Institute for Mathematics,
Nurdagül Anbar
Wilfried Meidl
论文数:
0
引用数:
0
h-index:
0
机构:
Max Planck Institute for Mathematics,
Wilfried Meidl
机构
:
[1]
Max Planck Institute for Mathematics,
[2]
Sabancı University,undefined
[3]
MDBF,undefined
来源
:
Applicable Algebra in Engineering, Communication and Computing
|
2015年
/ 26卷
关键词
:
Artin–Schreier curve;
Partially bent function;
Quadratic function;
Walsh transform;
11G20;
11E04;
11T23;
11T71;
D O I
:
暂无
中图分类号
:
学科分类号
:
摘要
:
For an odd prime p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} and an even integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} with gcd(n,p)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (n,p) > 1$$\end{document}, we consider quadratic functions from Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_{p^{n}}$$\end{document} to Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_p$$\end{document} of codimension k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. For various values of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}, we obtain classes of quadratic functions giving rise to maximal and minimal Artin–Schreier curves over Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_{p^{n}}$$\end{document}. We completely classify all maximal and minimal curves obtained from quadratic functions of codimension 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and coefficients in the prime field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_p$$\end{document}. The results complement our results obtained earlier for the case gcd(n,p)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (n,p) = 1$$\end{document}. The arguments are more involved than for the case gcd(n,p)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (n,p) = 1$$\end{document}.
引用
收藏
页码:409 / 426
页数:17
相关论文
共 50 条
[21]
P-RANK OF ARTIN-SCHREIER CURVES
SUBRAO, D
论文数:
0
引用数:
0
h-index:
0
机构:
MEM UNIV NEWFOUNDLAND,DEPT MATH STATISTICS & COMP SCI,ST JOHNS A1C 5S7,NEWFOUNDLAND,CANADA
MEM UNIV NEWFOUNDLAND,DEPT MATH STATISTICS & COMP SCI,ST JOHNS A1C 5S7,NEWFOUNDLAND,CANADA
SUBRAO, D
MANUSCRIPTA MATHEMATICA,
1975,
16
(02)
: 169
-
193
[22]
ON THE FROBENIUS ENDOMORPHISMS OF FERMAT AND ARTIN-SCHREIER CURVES
COLEMAN, RF
论文数:
0
引用数:
0
h-index:
0
COLEMAN, RF
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,
1988,
102
(03)
: 463
-
466
[23]
Bounds on special values of L-functions of elliptic curves in an Artin-Schreier family
Griffon, Richard
论文数:
0
引用数:
0
h-index:
0
机构:
Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
Griffon, Richard
EUROPEAN JOURNAL OF MATHEMATICS,
2019,
5
(02)
: 476
-
517
[24]
Efficient computation of maximal orders in Artin-Schreier extensions
Sutherland, Nicole
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Sydney, Sch Math & Stat, Computat Algebra Grp, Sydney, NSW 2006, Australia
Univ Sydney, Sch Math & Stat, Computat Algebra Grp, Sydney, NSW 2006, Australia
Sutherland, Nicole
JOURNAL OF SYMBOLIC COMPUTATION,
2013,
53
: 26
-
39
[25]
Lifting Artin-Schreier covers with maximal wild monodromy
Chretien, P.
论文数:
0
引用数:
0
h-index:
0
机构:
Inst Math Bordeaux, F-33405 Talence, France
Inst Math Bordeaux, F-33405 Talence, France
Chretien, P.
MANUSCRIPTA MATHEMATICA,
2014,
143
(1-2)
: 253
-
271
[26]
THE p-RANK STRATIFICATION OF ARTIN-SCHREIER CURVES
Pries, Rachel
论文数:
0
引用数:
0
h-index:
0
机构:
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Pries, Rachel
Zhu, Hui June
论文数:
0
引用数:
0
h-index:
0
机构:
SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Zhu, Hui June
ANNALES DE L INSTITUT FOURIER,
2012,
62
(02)
: 707
-
726
[27]
The number of rational points of a class of Artin-Schreier curves
Coulter, RS
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Queensland, Sch Comp Sci & Elect Engn, Ctr Discrete Math & Comp, St Lucia, Qld 4072, Australia
Univ Queensland, Sch Comp Sci & Elect Engn, Ctr Discrete Math & Comp, St Lucia, Qld 4072, Australia
Coulter, RS
FINITE FIELDS AND THEIR APPLICATIONS,
2002,
8
(04)
: 397
-
413
[28]
Moments of Artin-Schreier L-functions
Florea, Alexandra
论文数:
0
引用数:
0
h-index:
0
机构:
UC Irvine, Dept Math, 340 Rowland Hall,Off 540E, Irvine, CA 92697 USA
Florea, Alexandra
Jones, Edna
论文数:
0
引用数:
0
h-index:
0
机构:
UC Irvine, Dept Math, 340 Rowland Hall,Off 540E, Irvine, CA 92697 USA
Jones, Edna
Lalin, Matilde
论文数:
0
引用数:
0
h-index:
0
机构:
UC Irvine, Dept Math, 340 Rowland Hall,Off 540E, Irvine, CA 92697 USA
UC Irvine, Dept Math, 340 Rowland Hall,Off 540E, Irvine, CA 92697 USA
Lalin, Matilde
QUARTERLY JOURNAL OF MATHEMATICS,
2024,
75
(04):
: 1255
-
1284
[29]
On the distribution of zeroes of Artin–Schreier L-functions
Alexei Entin
论文数:
0
引用数:
0
h-index:
0
Alexei Entin
Geometric and Functional Analysis,
2012,
22
: 1322
-
1360
[30]
Efficient computation of maximal orders in Artin-Schreier-Witt extensions
Sutherland, Nicole
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Sydney, Computat Algebra Grp, Sch Math & Stat, Sydney, NSW 2006, Australia
Univ Sydney, Computat Algebra Grp, Sch Math & Stat, Sydney, NSW 2006, Australia
Sutherland, Nicole
JOURNAL OF SYMBOLIC COMPUTATION,
2016,
77
: 189
-
216
←
1
2
3
4
5
→