More on quadratic functions and maximal Artin–Schreier curves

被引:0
|
作者
Nurdagül Anbar
Wilfried Meidl
机构
[1] Max Planck Institute for Mathematics,
[2] Sabancı University,undefined
[3] MDBF,undefined
关键词
Artin–Schreier curve; Partially bent function; Quadratic function; Walsh transform; 11G20; 11E04; 11T23; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
For an odd prime p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} and an even integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} with gcd(n,p)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (n,p) > 1$$\end{document}, we consider quadratic functions from Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_{p^{n}}$$\end{document} to Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_p$$\end{document} of codimension k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. For various values of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}, we obtain classes of quadratic functions giving rise to maximal and minimal Artin–Schreier curves over Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_{p^{n}}$$\end{document}. We completely classify all maximal and minimal curves obtained from quadratic functions of codimension 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and coefficients in the prime field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_p$$\end{document}. The results complement our results obtained earlier for the case gcd(n,p)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (n,p) = 1$$\end{document}. The arguments are more involved than for the case gcd(n,p)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (n,p) = 1$$\end{document}.
引用
收藏
页码:409 / 426
页数:17
相关论文
共 50 条
  • [1] More on quadratic functions and maximal Artin-Schreier curves
    Anbar, Nurdaguel
    Meidl, Wilfried
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2015, 26 (05) : 409 - 426
  • [2] Quadratic functions and maximal Artin-Schreier curves
    Anbar, Nurdagul
    Meidl, Wilfried
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 30 : 49 - 71
  • [3] Explicit maximal and minimal curves of Artin–Schreier type from quadratic forms
    Daniele Bartoli
    Luciane Quoos
    Zülfükar Saygı
    Emrah Sercan Yılmaz
    Applicable Algebra in Engineering, Communication and Computing, 2021, 32 : 507 - 520
  • [4] Zeta functions of quadratic Artin-Schreier curves in characteristic two
    Blache, Regis
    Pierre, Timothe
    ACTA ARITHMETICA, 2023, 207 (01) : 39 - 56
  • [5] Explicit maximal and minimal curves of Artin-Schreier type from quadratic forms
    Bartoli, Daniele
    Quoos, Luciane
    Saygi, Zulfukar
    Yilmaz, Emrah Sercan
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (04) : 507 - 520
  • [6] WALSH TRANSFORMS OF TRACE FORMS WITH THREE OR MORE TERMS AND SOME MAXIMAL ARTIN-SCHREIER CURVES
    Roy, Sankhadip
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2021, 65 (01) : 95 - 103
  • [7] Zeta Functions of a Class of Artin-Schreier Curves with Many Automorphisms
    Bouw, Irene
    Ho, Wei
    Malmskog, Beth
    Scheidler, Renate
    Srinivasan, Padmavathi
    Vincent, Christelle
    DIRECTIONS IN NUMBER THEORY, 2016, 3 : 87 - 124
  • [8] ARTIN-SCHREIER CURVES AND CODES
    VANDERGEER, G
    JOURNAL OF ALGEBRA, 1991, 139 (01) : 256 - 272
  • [9] Polars of Artin-Schreier curves
    Hefez, A
    Kakuta, N
    ACTA ARITHMETICA, 1996, 77 (01) : 57 - 70
  • [10] Jacobians of quotients of Artin-Schreier curves
    Pries, RJ
    Recent Progress in Arithmetic and Algebraic Geometry, 2005, 386 : 145 - 156