Upper Bounds on Number of Steals in Rooted Trees

被引:0
|
作者
Charles E. Leiserson
Tao B. Schardl
Warut Suksompong
机构
[1] MIT Computer Science and Artificial Intelligence Laboratory,Department of Computer Science
[2] Stanford University,undefined
来源
关键词
Work stealing; Parallel algorithm; Extremal combinatorics; Binomial coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by applications in parallel computing, we analyze the setting of work stealing in multithreaded computations. We obtain tight upper bounds on the number of steals when the computation can be modeled by rooted trees. In particular, we show that if the computation with n processors starts with one processor having a complete k-ary tree of height h (and the remaining n − 1 processors having nothing), the maximum possible number of steals is ∑i=1n(k−1)ihi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }_{i=1}^{n}(k-1)^{i}\binom {h}{i}$\end{document}.
引用
收藏
页码:223 / 240
页数:17
相关论文
共 50 条
  • [31] AN UPPER BOUND ON THE RAMSEY NUMBER OF TREES
    GYARFAS, A
    TUZA, Z
    DISCRETE MATHEMATICS, 1987, 66 (03) : 309 - 310
  • [32] Horton-Strahler number, rooted pathwidth and upward drawings of trees
    Biedl, Therese
    INFORMATION PROCESSING LETTERS, 2022, 175
  • [33] Upper bounds on the upper signed total domination number of graphs
    Shan, Erfang
    Cheng, T. C. E.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1098 - 1103
  • [34] New upper bounds for the number of partitions into a given number of parts
    Merca, Mircea
    JOURNAL OF NUMBER THEORY, 2014, 142 : 298 - 304
  • [35] UPPER BOUNDS FOR THE NUMBER OF NUMBER FIELDS WITH ALTERNATING GALOIS GROUP
    Larson, Eric
    Rolen, Larry
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 499 - 503
  • [36] Upper bounds on the paired-domination number
    Chen, Xue-gang
    Shiu, Wai Chee
    Chan, Wai Hong
    APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1194 - 1198
  • [37] Tight upper bounds on the number of candidate patterns
    Geerts, F
    Goethals, B
    Van den Bussche, J
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2005, 30 (02): : 333 - 363
  • [38] Upper and Lower Bounds on the Number of Disjunctive Forms
    Tatsumi, Hisayuki
    Miyakawa, Masahiro
    Mukaidono, Masao
    ISMVL 2006: 36TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, 2006, : 50 - +
  • [39] Upper bounds on the linear chromatic number of a graph
    Li, Chao
    Wang, Weifan
    Raspaud, Andre
    DISCRETE MATHEMATICS, 2011, 311 (04) : 232 - 238
  • [40] Upper bounds for the number of facets of a simplicial complex
    Herzog, J
    Hibi, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1579 - 1583