Upper Bounds on Number of Steals in Rooted Trees

被引:0
|
作者
Charles E. Leiserson
Tao B. Schardl
Warut Suksompong
机构
[1] MIT Computer Science and Artificial Intelligence Laboratory,Department of Computer Science
[2] Stanford University,undefined
来源
关键词
Work stealing; Parallel algorithm; Extremal combinatorics; Binomial coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by applications in parallel computing, we analyze the setting of work stealing in multithreaded computations. We obtain tight upper bounds on the number of steals when the computation can be modeled by rooted trees. In particular, we show that if the computation with n processors starts with one processor having a complete k-ary tree of height h (and the remaining n − 1 processors having nothing), the maximum possible number of steals is ∑i=1n(k−1)ihi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }_{i=1}^{n}(k-1)^{i}\binom {h}{i}$\end{document}.
引用
收藏
页码:223 / 240
页数:17
相关论文
共 50 条
  • [1] Upper Bounds on Number of Steals in Rooted Trees
    Leiserson, Charles E.
    Schardl, Tao B.
    Suksompong, Warut
    THEORY OF COMPUTING SYSTEMS, 2016, 58 (02) : 223 - 240
  • [2] Upper bounds for the number of spanning trees of graphs
    Bozkurt, S. Burcu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [3] Upper bounds for the number of spanning trees of graphs
    Ş Burcu Bozkurt
    Journal of Inequalities and Applications, 2012
  • [4] Upper bounds on the locating chromatic number of trees
    Furuya, Michitaka
    Matsumoto, Naoki
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 338 - 341
  • [5] SHARP UPPER BOUNDS FOR THE NUMBER OF SPANNING TREES OF A GRAPH
    Feng, Lihua
    Yu, Guihai
    Jiang, Zhengtao
    Ren, Lingzhi
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) : 255 - 259
  • [6] The number of rooted trees of given depth
    Pach, Peter Pal
    Pluhar, Gabriella
    Pongracz, Andras
    Szabo, Csaba
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):
  • [7] SHARP UPPER AND LOWER BOUNDS ON THE NUMBER OF SPANNING TREES IN CARTESIAN PRODUCT OF GRAPHS
    Azarija, Jernej
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 785 - 790
  • [8] HYBRIDIZATION NUMBER ON THREE ROOTED BINARY TREES IS EPT
    Van Iersel, Leo
    Kelk, Steven
    Lekic, Nela
    Whidden, Chris
    Zeh, Norbert
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1607 - 1631
  • [9] Upper bounds on the coalition number
    Haynes, Teresa W.
    Hedetniemi, Jason T.
    Hedetniemi, Stephen T.
    Mcrae, Alice A.
    Mohan, Raghuveer
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 442 - 453
  • [10] New upper bounds on the spectral radius of trees with the given number of vertices and maximum degree
    Song, Haizhou
    Wang, Qiufen
    Tian, Lulu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) : 2527 - 2541