Group penalized logistic regression differentiates between benign and malignant ovarian tumors

被引:0
|
作者
Xuemei Hu
Ying Xie
Yanlin Yang
Huifeng Jiang
机构
[1] Chongqing Technology and Business University,School of Mathematics and Statistics
[2] Chongqing Technology and Business University,Chongqing Key Laboratory of Social Economy and Applied Statistics
[3] Chongqing Vocational College of Science and Technology,General National Defense Education College
[4] Chongqing University of Eduaction,School of Economics and Business Administration
[5] Chongqing Technology and Business University,Research Center for Economy of Upper Reaches of the Yangtse River
来源
Soft Computing | 2023年 / 27卷
关键词
Ovarian cancer; GCD algorithm; GLASSO/GSCAD/GMCP penalty; Machine learning methods; Deep learning methods;
D O I
暂无
中图分类号
学科分类号
摘要
Ovarian cancer is one of the most common types of cancer in women. Correct differentiation between benign and malignant ovarian tumors is of immense importance in medical fields. In this paper, we introduce group penalized logistic regressions to enhance diagnosis accuracy. Firstly, we divide 349 ovarian cancer patients into two sets: one for learning model parameters, and the other for assessing prediction performance, and select 46 variables from 49 traits as the predictor vector to construct GLASSO/GSCAD/GMCP penalized logistic regressions with 11 groups. Secondly, we develop group coordinate descent (GCD) algorithm and its specific pseudo code to simultaneously complete group selection and group estimation, introduce the tenfold cross validation (CV) procedure to select the relatively optimal tuning parameter, and apply the testing set and Youden index to obtain class probability estimator and class index information. Finally, we compute the accuracy, precision, specificity, sensitivity, F1-score and the area under ROC curve (AUC) to assess the prediction performance to the proposed group penalized methods, and found that GLASSO/GSCAD/GMCP penalized logistic regressions outperform three machine learning methods (ANN, artificial neural network; SVM, support vector machine; XGBoost, eXtreme gradient boosting) and three deep learning methods (CNN, convolutional neural network; DNN, deep neural network; RNN, recurrent neural network) in terms of accuracy, F1-score and AUC.
引用
收藏
页码:18565 / 18584
页数:19
相关论文
共 50 条
  • [11] Machine Learning Differentiates Between Benign and Malignant Parotid Tumors With Contrast-Enhanced Ultrasound Features
    Shan, Jie
    Yang, Yifei
    Liu, Hualian
    Sun, Zhaoyao
    Chen, Mingming
    Zhu, Zhichao
    JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2025, 83 (02) : 208 - 221
  • [12] VALUE OF CIRCULATING TUMOR DNA IN THE DIFFERENTIATION BETWEEN MALIGNANT AND BENIGN OVARIAN TUMORS
    Lof, P.
    Sistermans, E. A.
    Wessels, L.
    Amant, F.
    van den Broek, D.
    Mom, C. H.
    Hemelaar, M.
    van Baal, W. M.
    Verbruggen, M.
    Rosier-van Dunne, F.
    Hermsen, B.
    Horlings, H. M.
    Lok, C. A. R.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2019, 29 : A92 - A92
  • [13] PREOPERATIVE DIFFERENTIATION BETWEEN BENIGN AND MALIGNANT OVARIAN-TUMORS - A PREREQUISITE FOR LAPAROSCOPY
    ROCH, G
    WIENER KLINISCHE WOCHENSCHRIFT, 1995, 107 (17) : 529 - 531
  • [14] Clinical evaluation of MRI in the differential diagnosis between benign and malignant ovarian tumors
    Zhang, Tao
    Yi, Xin
    Lu, Jian
    Fu, Aiyan
    EUROPEAN JOURNAL OF GYNAECOLOGICAL ONCOLOGY, 2017, 38 (02) : 257 - 262
  • [15] Multiparametric MRI for differentiation of borderline ovarian tumors from stage I malignant epithelial ovarian tumors using multivariate logistic regression analysis
    Denewar, Fatmaelzahraa Abdelfattah
    Takeuchi, Mitsuru
    Urano, Misugi
    Kamishima, Yuki
    Kawai, Tatsuya
    Takahashi, Naoki
    Takeuchi, Moe
    Kobayashi, Susumu
    Honda, Junichi
    Shibamoto, Yuta
    EUROPEAN JOURNAL OF RADIOLOGY, 2017, 91 : 116 - 123
  • [16] Spectropolarimetry in the differential diagnosis of benign and malignant ovarian tumors
    Peresunko, O. P.
    Yermolenko, S. B.
    Gruia, I.
    THIRTEENTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2017, 10612
  • [17] Circulating Microparticles in Patients with Benign and Malignant Ovarian Tumors
    Rank, A.
    Liebhardt, S.
    Zwirner, J.
    Burges, A.
    Nieuwland, R.
    Toth, B.
    ANTICANCER RESEARCH, 2012, 32 (05) : 2009 - 2014
  • [18] Operative laparoscopy in patients with benign and malignant ovarian tumors
    Steck, T
    MEDIZINISCHE WELT, 1996, 47 (11): : 467 - 473
  • [19] Methylation profile in benign, borderline and malignant ovarian tumors
    Tam, K. F.
    Liu, V. W. S.
    Liu, S. S.
    Tsang, P. C. K.
    Cheung, A. N. Y.
    Yip, A. M. W.
    Ngan, H. Y. S.
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2007, 133 (05) : 331 - 341
  • [20] Methylation profile in benign, borderline and malignant ovarian tumors
    K. F. Tam
    V. W. S. Liu
    S. S. Liu
    P. C. K. Tsang
    A. N. Y. Cheung
    A. M. W. Yip
    H. Y. S. Ngan
    Journal of Cancer Research and Clinical Oncology, 2007, 133 : 331 - 341