A Unitarily Invariant Norm Inequality for Positive Semidefinite Matrices and a Question of Bourin

被引:0
|
作者
Mostafa Hayajneh
Saja Hayajneh
Fuad Kittaneh
机构
[1] Yarmouk University,Department of Mathematics
[2] The University of Jordan,Department of Mathematics
来源
Results in Mathematics | 2023年 / 78卷
关键词
Unitarily invariant norm; positive semidefinite matrix; Bourin’s question; inequality; Primary 15A60 Secondary 15B57; 47A30; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we obtain a new unitarily invariant norm inequality for positive semidefinite matrices. In fact, we prove that if A and B are positive semidefinite matrices and t∈34,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ \frac{3}{4},1\right] $$\end{document}, then B1-tA2t-1B1-t+A1-tB2t-1A1-t≤24t-34A+B.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left| \left| B^{1-t}A^{2t-1}B^{1-t}+A^{1-t}B^{2t-1}A^{1-t} \right| \right| \right| \le 2^{4\left( t-\frac{3}{4}\right) }\left| \left| \left| A+B \right| \right| \right| . \end{aligned}$$\end{document}The significance of this result is that it is sharper than an earlier norm inequality and closely related to an open question of Bourin. In particular, this inequality gives a way to settle Bourin’s question for t=14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=\frac{1}{4}$$\end{document} and 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}$$\end{document}, which is a result due to Hayajneh and Kittaneh [9].
引用
收藏
相关论文
共 50 条
  • [31] A note on unitarily invariant norm inequalities for accretive-dissipative operator matrices
    Yang, Junjian
    Italian Journal of Pure and Applied Mathematics, 2020, 43 : 206 - 212
  • [32] An eigenvalue majorization inequality for positive semidefinite block matrices
    Lin, Minghua
    Wolkowicz, Henry
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12): : 1365 - 1368
  • [33] New Hilbert–Schmidt norm inequalities for positive semidefinite matrices
    Mostafa Hayajneh
    Saja Hayajneh
    Fuad Kittaneh
    Advances in Operator Theory, 2023, 8
  • [34] INEQUALITIES OF UNITARILY INVARIANT NORMS FOR MATRICES
    Wu, Xuesha
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 28 - 33
  • [35] A MATRIX INEQUALITY FOR UNITARILY INVARIANT NORMS
    Jin, Xin
    Zhang, Feng
    Xu, Jinli
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 471 - 475
  • [36] Unitarily invariant norm inequalities for matrix means
    Zuo, Hongliang
    Jiang, Fazhen
    JOURNAL OF ANALYSIS, 2021, 29 (03): : 905 - 916
  • [37] Unitarily invariant norm inequalities for matrix means
    Hongliang Zuo
    Fazhen Jiang
    The Journal of Analysis, 2021, 29 : 905 - 916
  • [38] UNITARILY INVARIANT NORM AND Q-NORM ESTIMATIONS FOR THE MOORE-PENROSE INVERSE OF MULTIPLICATIVE PERTURBATIONS OF MATRICES
    Luo, Juan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03): : 1107 - 1117
  • [39] On weakly unitarily invariant norm and the Aluthge transformation
    Okubo, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 371 : 369 - 375
  • [40] Inequalities of unitarily invariant norms for matrices
    Wu, Xuesha (xuesha_wu@163.com), 2018, Forum-Editrice Universitaria Udinese SRL