Enhanced Doubly Robust Procedure for Causal Inference

被引:0
|
作者
Ao Yuan
Anqi Yin
Ming T. Tan
机构
[1] Georgetown University,Department of Biostatistics, Bioinformatics and Biomathematics
来源
Statistics in Biosciences | 2021年 / 13卷
关键词
Causal effect; Doubly robust estimation; Isotonic regression; Semiparametric model;
D O I
暂无
中图分类号
学科分类号
摘要
In the last two decades, doubly robust estimators (DREs) have been developed for causal inference on various target parameters derived from different study designs. The approach combines propensity score and outcome models of the confounding variables. It yields unbiased estimator of the target parameter if at least one of the two models is correctly specified, a desirable property and an improvement on the inverse propensity score weighted estimate. However, in practice it is difficult to know what the correct model could be and both propensity score and outcome models may be incorrectly specified. Furthermore, it is known that DRE may fail and give estimates with large bias and variance, even when the propensity and/or outcome models are mildly misspecified. To reduce such risk and increase robustness in inference, we propose an enhanced DRE method utilizing semiparametric models with nonparametric monotone link functions for both the propensity score and the outcome models. The models are estimated using an iterative procedure incorporating the pool adjacent violators algorithm. We then study the asymptotic properties of the enhanced DREs. Simulation studies, performed to evaluate their finite sample performance, demonstrated clear superiority to several commonly used doubly robust procedures with reduced bias and increased efficiency even with both models are misspecified, thus enhancing the robustness of DRE. The method is then applied to analyzing a clinical trial from the AIDS Clinical Trials Group and the National Epidemiology Follow-up Study.
引用
收藏
页码:454 / 478
页数:24
相关论文
共 50 条
  • [1] Enhanced Doubly Robust Procedure for Causal Inference
    Yuan, Ao
    Yin, Anqi
    Tan, Ming T.
    [J]. STATISTICS IN BIOSCIENCES, 2021, 13 (03) : 454 - 478
  • [2] A Bayesian view of doubly robust causal inference
    Saarela, O.
    Belzile, L. R.
    Stephens, D. A.
    [J]. BIOMETRIKA, 2016, 103 (03) : 667 - 681
  • [3] Relaxed doubly robust estimation in causal inference
    Xu, Tinghui
    Zhao, Jiwei
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2024, 8 (01) : 69 - 79
  • [4] An Alternative Doubly Robust Estimation in Causal Inference Model
    Wei, Shaojie
    Li, Gaorong
    Zhang, Zhongzhan
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022,
  • [5] Doubly robust estimation in missing data and causal inference models
    Bang, H
    [J]. BIOMETRICS, 2005, 61 (04) : 962 - 972
  • [6] Doubly robust estimation and causal inference for recurrent event data
    Su, Chien-Lin
    Steele, Russell
    Shrier, Ian
    [J]. STATISTICS IN MEDICINE, 2020, 39 (17) : 2324 - 2338
  • [7] Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death
    Shardell, Michelle
    Hicks, Gregory E.
    Ferrucci, Luigi
    [J]. BIOSTATISTICS, 2015, 16 (01) : 155 - 168
  • [8] Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation
    Waernbaum, Ingeborg
    [J]. STATISTICS IN MEDICINE, 2012, 31 (15) : 1572 - 1581
  • [9] Ultra-high dimensional variable selection for doubly robust causal inference
    Tang, Dingke
    Kong, Dehan
    Pan, Wenliang
    Wang, Linbo
    [J]. BIOMETRICS, 2023, 79 (02) : 903 - 914
  • [10] Causal inference accounting for unobserved confounding after outcome regression and doubly robust estimation
    Genback, Minna
    de Luna, Xavier
    [J]. BIOMETRICS, 2019, 75 (02) : 506 - 515