Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear

被引:0
|
作者
Peter D. Chang
Tony T. Wong
Michael J. Rasiej
机构
[1] University of California Irvine Medical Center,Center for Artificial Intelligence in Diagnostic Medicine
[2] Columbia University Irving Medical Center,Department of Radiology
来源
关键词
Deep learning; Machine learning; Artificial intelligence; Anterior cruciate ligament; Magnetic resonance imaging;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning for MRI detection of sports injuries poses unique challenges. To address these difficulties, this study examines the feasibility and incremental benefit of several customized network architectures in evaluation of complete anterior cruciate ligament (ACL) tears. Two hundred sixty patients, ages 18–40, were identified in a retrospective review of knee MRIs obtained from September 2013 to March 2016. Half of the cases demonstrated a complete ACL tear (624 slices), the other half a normal ACL (3520 slices). Two hundred cases were used for training and validation, and the remaining 60 cases as an independent test set. For each exam with an ACL tear, coronal proton density non-fat suppressed sequence was manually annotated to delineate: (1) a bounding-box around the cruciate ligaments; (2) slices containing the tear. Multiple convolutional neural network (CNN) architectures were implemented including variations in input field-of-view and dimensionality. For single-slice CNN architectures, validation accuracy of a dynamic patch-based sampling algorithm (0.765) outperformed both cropped slice (0.720) and full slice (0.680) strategies. Using the dynamic patch-based sampling algorithm as a baseline, a five-slice CNN input (0.915) outperformed both three-slice (0.865) and single-slice (0.765) inputs. The final highest performing five-slice dynamic patch-based sampling algorithm resulted in independent test set AUC, sensitivity, specificity, PPV, and NPV of 0.971, 0.967, 1.00, 0.938, and 1.00. A customized 3D deep learning architecture based on dynamic patch-based sampling demonstrates high performance in detection of complete ACL tears with over 96% test set accuracy. A cropped field-of-view and 3D inputs are critical for high algorithm performance.
引用
收藏
页码:980 / 986
页数:6
相关论文
共 50 条
  • [11] Anterior cruciate ligament tear detection based on deep belief networks and improved honey badger algorithm
    Sun, Junjie
    Wang, Lijuan
    Razmjooy, Navid
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [12] Radiographic features of anterior cruciate ligament tear
    Hall, FM
    RADIOLOGY, 2002, 222 (02) : 576 - 576
  • [13] Incidence of second anterior cruciate ligament tear
    Schilaty ND
    Bates NA
    Sanders TL
    中华物理医学与康复杂志, 2017, 39 (08) : 610 - 610
  • [14] Anterior Cruciate Ligament Tear THE AUTHORS REPLY
    Spindler, Kurt P.
    Wright, Rick W.
    NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (14): : 1463 - 1463
  • [15] ISOLATED PARTIAL TEAR OF ANTERIOR CRUCIATE LIGAMENT
    MCDANIEL, WJ
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 1976, (115) : 209 - 212
  • [16] Complete anterior cruciate ligament tear increases the risk for cartilage loss in knee osteoarthritis
    Amin, S
    Guermazi, A
    LaValley, M
    Grigorian, M
    Hunter, DJ
    Gale, D
    Felson, D
    ARTHRITIS AND RHEUMATISM, 2004, 50 (09): : S142 - S142
  • [17] Anterior medial meniscus detachment and anterior cruciate ligament tear
    Navarro-Holgado, Pablo
    Cuevas-Perez, Antonio
    Aguayo-Galeote, Miguel A.
    Carpintero-Benitez, Pedro
    KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2007, 15 (05) : 587 - 590
  • [18] Anterior medial meniscus detachment and anterior cruciate ligament tear
    Pablo Navarro-Holgado
    Antonio Cuevas-Pérez
    Miguel A. Aguayo-Galeote
    Pedro Carpintero-Benítez
    Knee Surgery, Sports Traumatology, Arthroscopy, 2007, 15 : 587 - 590
  • [19] Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation
    Tran, Alexia
    Lassalle, Louis
    Zille, Pascal
    Guillin, Raphael
    Pluot, Etienne
    Adam, Chloe
    Charachon, Martin
    Brat, Hugues
    Wallaert, Maxence
    D'Assignies, Gaspard
    Rizk, Benoit
    EUROPEAN RADIOLOGY, 2022, 32 (12) : 8394 - 8403
  • [20] Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation
    Alexia Tran
    Louis Lassalle
    Pascal Zille
    Raphaël Guillin
    Etienne Pluot
    Chloé Adam
    Martin Charachon
    Hugues Brat
    Maxence Wallaert
    Gaspard d’Assignies
    Benoît Rizk
    European Radiology, 2022, 32 : 8394 - 8403