Octahedral norms in free Banach lattices

被引:0
|
作者
Sheldon Dantas
Gonzalo Martínez-Cervantes
José David Rodríguez Abellán
Abraham Rueda Zoca
机构
[1] Czech Technical University in Prague,Department of Mathematics, Faculty of Electrical Engineering
[2] Universidad de Murcia,Departamento de Matemáticas
[3] Departamento de Análisis Matemático,undefined
关键词
Banach lattice; Free Banach lattice; Octahedral norms; Almost square; Diameter two properties; 46B04; 46B20; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study octahedral norms in free Banach lattices FBL[E] generated by a Banach space E. We prove that if E is an L1(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1(\mu )$$\end{document}-space, a predual of von Neumann algebra, a predual of a JBW∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-triple, the dual of an M-embedded Banach space, the disc algebra or the projective tensor product under some hypothesis, then the norm of FBL[E] is octahedral. We get the analogous result when the topological dual E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*$$\end{document} of E is almost square. We finish the paper by proving that the norm of the free Banach lattice generated by a Banach space of dimension ≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ge 2$$\end{document} is nowhere Fréchet differentiable. Moreover, we discuss some open problems on this topic.
引用
收藏
相关论文
共 50 条
  • [41] MULTIPLICATIVE NORMS ON BANACH ALGEBRAS
    EDWARDS, RE
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1951, 47 (03): : 473 - 474
  • [42] DIFFERENTIABLE NORMS IN BANACH SPACES
    RESTREPO, G
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1964, 70 (03) : 413 - &
  • [43] Antiproximinal norms in Banach spaces
    Borwein, JM
    Jiménez-Sevilla, M
    Moreno, JP
    JOURNAL OF APPROXIMATION THEORY, 2002, 114 (01) : 57 - 69
  • [44] ON DISPERSIVE OPERATORS IN BANACH LATTICES
    SATO, KI
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (02) : 429 - &
  • [45] Interpolation of weighted Banach lattices
    Cwikel, M
    Nilsson, PG
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 165 (787) : 1 - 105
  • [46] POSITIVE PROJECTIONS IN BANACH LATTICES
    TZAFRIRI, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 172 - &
  • [47] Komls properties in Banach lattices
    Emelyanov, E. Y.
    Erkursun-Ozcan, N.
    Gorokhova, S. G.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 324 - 331
  • [48] Weak precompactness in Banach lattices
    Xiang, Bo
    Chen, Jinxi
    Li, Lei
    POSITIVITY, 2022, 26 (01)
  • [49] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [50] Some approximation properties of Banach spaces and Banach lattices
    Figiel, Tadeusz
    Johnson, William B.
    Pelczynski, Aleksander
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 199 - 231