Existence and Regularity of Pullback Attractors for a Non-autonomous Diffusion Equation with Delay and Nonlocal Diffusion in Time-Dependent Spaces

被引:0
|
作者
Yuming Qin
Bin Yang
机构
[1] Donghua University,Department of Mathematics, Institute for Nonlinear Science
[2] Donghua University,College of Information Science and Technology
来源
关键词
Non-autonomous diffusion equations; Time-dependent pullback attractors; Delay; Regularity; 35B40; 35B41; 35B65; 35K57;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the asymptotic behavior of solutions to a non-autonomous diffusion equations with delay containing some hereditary characteristics and nonlocal diffusion in time-dependent space CHt(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mathcal {H}_{t}(\varOmega )}$$\end{document}. When the nonlinear function f satisfies the polynomial growth of arbitrary order p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-1$$\end{document}(p≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p \ge 2)$$\end{document} and the external force h∈Lloc2R;H-1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h \in L_{l o c}^{2}\left( \mathbb {R}; H^{-1}(\varOmega )\right) $$\end{document}, we establish the existence and regularity of the time-dependent pullback attractors.
引用
收藏
相关论文
共 50 条
  • [41] PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC EQUATIONS WITH INFINITE DELAY
    Le Van Hieu
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (03): : 289 - 308
  • [42] Pullback attractor for a non-autonomous reaction-diffusion equation in some unbounded domains
    Anguiano M.
    SeMA Journal, 2010, 51 (1): : 9 - 16
  • [43] Attractors for the nonclassical reaction–diffusion equations on time-dependent spaces
    Kaixuan Zhu
    Yongqin Xie
    Feng Zhou
    Boundary Value Problems, 2020
  • [44] Attractors of the non-autonomous reaction-diffusion equation with nonlinear boundary condition
    Yang, Lu
    Yang, Mei-Hua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3946 - 3954
  • [45] Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms
    Caraballo, Tomas
    Herrera-Cobos, Marta
    Marin-Rubio, Pedro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 3 - 18
  • [47] Pullback Measure Attractors for Non-autonomous Fractional Stochastic Reaction-Diffusion Equations on Unbounded Domains
    Mi, Shaoyue
    Li, Ran
    Li, Dingshi
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (03):
  • [48] The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space
    Xie, Yongqin
    Zhu, Kaixuan
    Sun, Chunyou
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
  • [49] Attractors of non-autonomous reaction-diffusion equations
    Song, Haitao
    Ma, Shan
    Zhong, Chengkui
    NONLINEARITY, 2009, 22 (03) : 667 - 681
  • [50] PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMI-LINEAR DEGENERATE PARABOLIC EQUATION
    Cung The Anh
    Tang Quoc Bao
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 537 - 554