Existence and Regularity of Pullback Attractors for a Non-autonomous Diffusion Equation with Delay and Nonlocal Diffusion in Time-Dependent Spaces

被引:0
|
作者
Yuming Qin
Bin Yang
机构
[1] Donghua University,Department of Mathematics, Institute for Nonlinear Science
[2] Donghua University,College of Information Science and Technology
来源
关键词
Non-autonomous diffusion equations; Time-dependent pullback attractors; Delay; Regularity; 35B40; 35B41; 35B65; 35K57;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the asymptotic behavior of solutions to a non-autonomous diffusion equations with delay containing some hereditary characteristics and nonlocal diffusion in time-dependent space CHt(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mathcal {H}_{t}(\varOmega )}$$\end{document}. When the nonlinear function f satisfies the polynomial growth of arbitrary order p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-1$$\end{document}(p≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p \ge 2)$$\end{document} and the external force h∈Lloc2R;H-1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h \in L_{l o c}^{2}\left( \mathbb {R}; H^{-1}(\varOmega )\right) $$\end{document}, we establish the existence and regularity of the time-dependent pullback attractors.
引用
收藏
相关论文
共 50 条
  • [1] Existence and Regularity of Pullback Attractors for a Non-autonomous Diffusion Equation with Delay and Nonlocal Diffusion in Time-Dependent Spaces
    Qin, Yuming
    Yang, Bin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [2] Existence and regularity of time-dependent pullback attractors for the non-autonomous nonclassical diffusion equations
    Qin, Yuming
    Yang, Bin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (06) : 1533 - 1550
  • [3] EXISTENCE OF PULLBACK ATTRACTORS FOR THE NON-AUTONOMOUS SUSPENSION BRIDGE EQUATION WITH TIME DELAY
    Wang, Suping
    Ma, Qiaozhen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (04): : 1299 - 1316
  • [4] On the existence of pullback attractors for non-autonomous reaction-diffusion equations
    Wang, Yonghai
    Zhong, Chengkui
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (01): : 1 - 16
  • [5] REGULARITY OF PULLBACK ATTRACTORS FOR NON-AUTONOMOUS STOCHASTIC COUPLED REACTION-DIFFUSION SYSTEMS
    Yin, Jinyan
    Li, Yangrong
    Gu, Anhui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (03): : 884 - 898
  • [6] Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in RN
    Zhu, Kaixuan
    Zhou, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 2089 - 2105
  • [7] Pullback attractors for the nonclassical diffusion equations with memory in time-dependent spaces
    Li, Ke
    Xie, Yongqin
    Ren, Yong
    Li, Jun
    AIMS MATHEMATICS, 2023, 8 (12): : 30537 - 30561
  • [8] Pullback attractors for a class of non-autonomous nonclassical diffusion equations
    Cung The Anh
    Tang Quoc Bao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 399 - 412
  • [9] Pullback attractors for non-autonomous reaction-diffusion equation in non-cylindrical domains
    Yanping Xiao
    Advances in Difference Equations, 2016
  • [10] Pullback attractors for non-autonomous reaction-diffusion equation in non-cylindrical domains
    Xiao, Yanping
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,