Nanostructured Arc-PVD coatings based on titanium and chromium nitrides

被引:0
|
作者
I. V. Blinkov
A. O. Volkhonskii
Yu. V. Konyukhov
机构
[1] National University of Science and Technology MISiS,
关键词
Crystallite Size; RUSSIAN Metallurgy; Wear Resistant Coating; Chromium Nitride; Hard Alloy Plate;
D O I
10.1134/S003602951207004X
中图分类号
学科分类号
摘要
Multicomponent nanostructured coatings based on Ti-Cr-Al-N nitrides with a crystallite size of 10–100 nm are formed by arc physical vacuum deposition. The dependences of the structure and phase composition of the coatings on the deposition parameters, namely, the bias potential applied to a substrate and the arc current at a chromium cathode, are found. The appearance of chromium nitride phases in the coatings is accompanied by a decrease in the crystallite size. The hardness (up to 32 GPa) and the elastic modulus (up to 700 GPa) of the coatings are determined by both the crystallite size and the microstrains (up to 0.74%) induced by chemical heterogeneity in the coatings. The adhesion strength of the coatings is estimated at 90 N. Cutting hard-alloy tools with the grown coatings are characterized by a high resistance coefficient during continuous (up to 5.1) and discontinuous (up to 5.7) cutting of 38KhNMA steel.
引用
收藏
页码:599 / 605
页数:6
相关论文
共 50 条
  • [31] Thermal Stability and Electrochemical Properties of Ti–Al–Mo–Ni–N Coatings Fabricated by Arc-PVD
    A. P. Demirov
    V. S. Sergevnin
    I. V. Blinkov
    D. S. Belov
    A. O. Volkhonskii
    Protection of Metals and Physical Chemistry of Surfaces, 2020, 56 : 358 - 362
  • [32] Thermal Stability and Electrochemical Properties of Ti-Al-Mo-Ni-N Coatings Fabricated by Arc-PVD
    Demirov, A. P.
    Sergevnin, V. S.
    Blinkov, I. V.
    Belov, D. S.
    Volkhonskii, A. O.
    PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES, 2020, 56 (02) : 358 - 362
  • [33] Application of a transmission line model to evaluate the influence of structural defects on the corrosion behavior of arc-PVD CrN coatings
    Cedeno-Vente, M. L.
    Manriquez, J.
    Mondragon-Rodriguez, G. C.
    Camacho, N.
    Gomez-Ovalle, A. E. .
    Gonzalez-Carmona, J. M.
    Alvarado-Orozco, J. M.
    Espinosa-Arbelaez, D. G.
    CERAMICS INTERNATIONAL, 2021, 47 (15) : 20885 - 20899
  • [34] Microwave plasma fluidized bed arc-PVD coating of particulate materials
    Pajkic, Zeljko
    Wolf, Hannes
    Gerdes, Thorsten
    Willert-Porada, Monika
    SURFACE & COATINGS TECHNOLOGY, 2008, 202 (16): : 3927 - 3932
  • [35] REPRODUCIBLE ARC-PVD PROCESS MANAGEMENT UNDER VARIOUS REACTIVE GASES
    KNOTEK, O
    LOFFLER, F
    KRAMER, G
    STOSSEL, C
    VACUUM, 1992, 43 (5-7) : 567 - 571
  • [36] Arc-PVD Coating Thickness Uniformity Improving on Complex Geometry Surfaces
    Oleinik A.V.
    Nazarov A.Y.
    Ramazanov K.N.
    Husainov Y.G.
    Nagimov R.S.
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (04) : 644 - 650
  • [37] Nickel Effect on the Structure and Properties of Adaptive Wear-Resistant Arc-PVD Ti–Al–Mo–N Coatings
    V. S. Sergevnin
    I. V. Blinkov
    A. O. Volkhonskii
    D. S. Belov
    Russian Journal of Non-Ferrous Metals, 2020, 61 : 466 - 474
  • [38] Structure and Phase Formation in the Mo–Si–Al–Zr–N System during the Formation of Arc-PVD Coatings and Their Properties
    Blinkov I.V.
    Chernogor A.V.
    Volkhonskii A.O.
    Levinskii Y.V.
    Sergevnin V.S.
    Belov D.S.
    Russian Metallurgy (Metally), 2018, 2018 (07) : 663 - 670
  • [39] Erosion resistant titanium based PVD coatings on CFRP
    Maurer, C.
    Schulz, U.
    WEAR, 2013, 302 (1-2) : 937 - 945
  • [40] Long-term cyclic oxidation of Al-Si diffusion coatings deposited by Arc-PVD on TiAlCrNb alloy
    Swadzba, L
    Moskal, G
    Hetmanczyk, M
    Mendala, B
    Jarczyk, G
    SURFACE & COATINGS TECHNOLOGY, 2004, 184 (01): : 93 - 101