Boundedness and stabilization in the 3D minimal attraction–repulsion chemotaxis model with logistic source

被引:0
|
作者
Guoqiang Ren
Bin Liu
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
关键词
Chemotaxis; Attraction–repulsion; Boundedness; Logistic source; Asymptotic behavior; Primary 35K45; 92C17; Secondary 35A01; 35Q92; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the fully parabolic attraction–repulsion chemotaxis system with logistic source in a three-dimensional bounded domain with smooth boundary. We first derive an explicit formula μ∗=μ∗(3,d1,d2,d3,β1,β2,χ,ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _*=\mu _*(3,d_1,d_2,d_3,\beta _1,\beta _2,\chi ,\xi )$$\end{document} for the logistic damping rate μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} such that the system has no blowups whenever μ>μ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >\mu _*$$\end{document}. In addition, the asymptotic behavior of the solutions is discussed; we obtain the other explicit formula μ∗=μ∗(d1,d2,d3,α1,α2,β1,β2,χ,ξ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^*=\mu ^*(d_1,d_2,d_3,\alpha _1,\alpha _2,\beta _1,\beta _2,\chi ,\xi ,\lambda )$$\end{document} for the logistic damping rate so that the convergence rate is expressed explicitly whenever μ>μ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >\mu ^*$$\end{document}. Our results generalize and improve partial previously known ones.
引用
收藏
相关论文
共 50 条
  • [31] Spreading speed in a fractional attraction-repulsion chemotaxis system with logistic source
    Jiang, Chao
    Lei, Yuzhu
    Liu, Zuhan
    Zhang, Weiyi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230
  • [32] Boundedness in a nonlinear gradient chemotaxis model with logistic source
    Yang, Xiaofei
    Zhang, Qingshan
    Wu, Wanyu
    Zhang, Qingshan (qingshan11@yeah.net), 1600, Forum-Editrice Universitaria Udinese SRL (44): : 791 - 799
  • [33] Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production and consumption
    Tongxing Li
    Silvia Frassu
    Giuseppe Viglialoro
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [34] Boundedness in a nonlinear gradient chemotaxis model with logistic source
    Yang, Xiaofei
    Zhang, Qingshan
    Wu, Wanyu
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 791 - 799
  • [35] Boundedness of solutions to an attraction-repulsion chemotaxis model in R2
    Hsieh, Chia-Yu
    Yu, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 422 - 438
  • [36] Global boundedness in a quasilinear attraction-repulsion chemotaxis model with nonlinear sensitivity
    Wu, Sainan
    Wu, Boying
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 554 - 582
  • [37] Boundedness and stabilization in a two-species chemotaxis system with logistic source
    Guoqiang Ren
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [38] Boundedness and stabilization in a two-species chemotaxis system with logistic source
    Ren, Guoqiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [39] A parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with logistic source
    Zhao, Jie
    Mu, Chunlai
    Zhou, Deqin
    Lin, Ke
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 650 - 679
  • [40] TRAVELING WAVES OF A FULL PARABOLIC ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH LOGISTIC SOURCE
    Salako, Rachidi B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (10) : 5945 - 5973