Weak type inequalities of maximal Hankel convolution operators

被引:0
|
作者
Betancor J.J. [1 ]
机构
[1] Departamento de Análisis Matemático, Universidad de La Laguna, 38271-La Laguna. Tenerife, Islas Canarias
关键词
maximal Hankel convolution operators; weak-type inequality;
D O I
10.1007/BF02844378
中图分类号
学科分类号
摘要
In this paper we characterize weak type (1,1) inequalities for Hankel convolution operators by means of discrete methods. © 1999 Springer.
引用
收藏
页码:51 / 64
页数:13
相关论文
共 50 条
  • [41] SOME PROPERTIES OF HANKEL CONVOLUTION-OPERATORS
    BETANCOR, JJ
    MARRERO, I
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (04): : 398 - 406
  • [42] Hankel convolution operators on entire functions and distributions
    Belhadj, M
    Betancor, JJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) : 40 - 63
  • [43] Hardy type inequalities with exponential weights for a class of convolution operators
    Mantoiu, Marius
    Purice, Radu
    ARKIV FOR MATEMATIK, 2007, 45 (01): : 83 - 103
  • [44] Norm inequalities for convolution operators
    Nursultanov, Erlan
    Tikhonov, Sergey
    Tleukhanova, Nazerke
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) : 1385 - 1388
  • [45] (WEAK) COMPACTNESS OF HANKEL OPERATORS ON BMOA
    Papadimitrakis, Michael
    PUBLICACIONS MATEMATIQUES, 2014, 58 (01) : 221 - 231
  • [46] On weighted weak type inequalities for modified Hardy operators
    Martin-Reyes, FJ
    Ortega, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) : 1739 - 1746
  • [47] Sharp Weak Type Inequalities for Fractional Integral Operators
    Banuelos, Rodrigo
    Osekowski, Adam
    POTENTIAL ANALYSIS, 2017, 47 (01) : 103 - 121
  • [48] Operators of Hankel type
    S. Bermudo
    S. A. M. Marcantognini
    M. D. Morán
    Czechoslovak Mathematical Journal, 2006, 56 : 1147 - 1163
  • [49] Sharp Weak Type Inequalities for Fractional Integral Operators
    Rodrigo Bañuelos
    Adam Osȩkowski
    Potential Analysis, 2017, 47 : 103 - 121