A global regularity result for the 2D Boussinesq equations with critical dissipation

被引:0
|
作者
Atanas Stefanov
Jiahong Wu
机构
[1] University of Kansas,Department of Mathematics
[2] Oklahoma State University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper examines the global regularity problem on the two-dimensional incompressible Boussinesq equations with fractional dissipation, given by Λαu in the velocity equation and by Λβθ in the temperature equation, where Λ−−Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda - \sqrt { - \Delta } $$\end{document} denotes the Zygmund operator. We establish the global existence and smoothness of classical solutions when (α, β) is in the critical range: α>(1777−23)/24=0.789103...\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > (\sqrt {1777} - 23)/24 = 0.789103...$$\end{document}, β > 0, and α + β = 1. This result improves previous work which obtained the global regularity for α>(23−145)/12≈0.9132,β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > (23-\sqrt {145})/12 \approx 0.9132,\;\beta>0$$\end{document}, and α + β = 1.
引用
收藏
页码:269 / 290
页数:21
相关论文
共 50 条
  • [1] A global regularity result for the 2D Boussinesq equations with critical dissipation
    Stefanov, Atanas
    Wu, Jiahong
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 269 - 290
  • [2] On the global regularity of the 2D Boussinesq equations with fractional dissipation
    Ye, Zhuan
    Xu, Xiaojing
    Xue, Liutang
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (8-9) : 1420 - 1439
  • [3] REGULARITY RESULTS FOR THE 2D BOUSSINESQ EQUATIONS WITH CRITICAL OR SUPERCRITICAL DISSIPATION
    Wu, Jiahong
    Xu, Xiaojing
    Xue, Liutang
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) : 1963 - 1997
  • [4] Global regularity results for the 2D Boussinesq equations with vertical dissipation
    Adhikari, Dhanapati
    Cao, Chongsheng
    Wu, Jiahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) : 1637 - 1655
  • [5] Global regularity results for the 2D Boussinesq equations with partial dissipation
    Adhikari, Dhanapati
    Cao, Chongsheng
    Shang, Haifeng
    Wu, Jiahong
    Xu, Xiaojing
    Ye, Zhuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 1893 - 1917
  • [6] Remarks on global regularity of the 2D Boussinesq equations with fractional dissipation
    Ye, Zhuan
    Xu, Xiaojing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 : 715 - 724
  • [7] An alternative approach to global regularity for the 2D Euler-Boussinesq equations with critical dissipation
    Ye, Zhuan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
  • [8] Global regularity results for the 2D Boussinesq equations and micropolar equations with partial dissipation
    Ye, Zhuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) : 910 - 944
  • [9] A note on global regularity results for 2D Boussinesq equations with fractional dissipation
    Ye, Zhuan
    ANNALES POLONICI MATHEMATICI, 2016, 117 (03) : 231 - 247
  • [10] Global Regularity Results of the 2D Boussinesq Equations with Fractional Laplacian Dissipation
    Zhuan Ye
    Xiaojing Xu
    Journal of Mathematical Fluid Mechanics, 2016, 18 : 361 - 380