An alternative approach to global regularity for the 2D Euler-Boussinesq equations with critical dissipation

被引:8
|
作者
Ye, Zhuan [1 ]
机构
[1] Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Boussinesq equations; Global regularity; DIFFERENTIABILITY; DRIFT;
D O I
10.1016/j.na.2019.111591
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to provide an alternative approach to the global regularity for the two-dimensional Euler-Boussinesq equations which couple the incompressible Euler equation for the velocity and a transport equation with fractional critical diffusion for the temperature. In contrast to the first proof of this result in [T. Hmidi, S. Keraani, and F. Rousset, Comm. Partial Differential Equations, 36 (2011), pp. 420-445] that took fully exploit of the hidden structure of the coupling system, the main argument in this manuscript is mainly based on the differentiability of the drift-diffusion equation. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Remarks on the improved regularity criterion for the 2D Euler-Boussinesq equations with supercritical dissipation
    Ye, Zhuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06):
  • [2] A global regularity result for the 2D Boussinesq equations with critical dissipation
    Atanas Stefanov
    Jiahong Wu
    Journal d'Analyse Mathématique, 2019, 137 : 269 - 290
  • [3] A global regularity result for the 2D Boussinesq equations with critical dissipation
    Stefanov, Atanas
    Wu, Jiahong
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 269 - 290
  • [4] Some New Regularity Criteria for the 2D Euler-Boussinesq Equations Via the Temperature
    Zhuan Ye
    Acta Applicandae Mathematicae, 2018, 157 : 141 - 169
  • [5] Some New Regularity Criteria for the 2D Euler-Boussinesq Equations Via the Temperature
    Ye, Zhuan
    ACTA APPLICANDAE MATHEMATICAE, 2018, 157 (01) : 141 - 169
  • [6] On the global regularity of the 2D Boussinesq equations with fractional dissipation
    Ye, Zhuan
    Xu, Xiaojing
    Xue, Liutang
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (8-9) : 1420 - 1439
  • [7] Generalized 2D Euler-Boussinesq equations with a singular velocity
    Durga, K. C.
    Regmi, Dipendra
    Tao, Lizheng
    Wu, Jiahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (01) : 82 - 108
  • [8] REGULARITY RESULTS FOR THE 2D BOUSSINESQ EQUATIONS WITH CRITICAL OR SUPERCRITICAL DISSIPATION
    Wu, Jiahong
    Xu, Xiaojing
    Xue, Liutang
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) : 1963 - 1997
  • [9] Global regularity results for the 2D Boussinesq equations with vertical dissipation
    Adhikari, Dhanapati
    Cao, Chongsheng
    Wu, Jiahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) : 1637 - 1655
  • [10] Global regularity results for the 2D Boussinesq equations with partial dissipation
    Adhikari, Dhanapati
    Cao, Chongsheng
    Shang, Haifeng
    Wu, Jiahong
    Xu, Xiaojing
    Ye, Zhuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 1893 - 1917