Intersection Theorems for Triangles

被引:0
|
作者
Peter Frankl
Andreas Holmsen
Andrey Kupavskii
机构
[1] Renyi Institute,Department of Mathematical Sciences
[2] Moscow Institute of Physics and Technology,G
[3] KAIST,SCOP, CNRS
[4] University Grenoble-Alpes,undefined
来源
关键词
Extremal hypergraphs; Geometric set systems; Intersecting triangles; 05D05; 05C65; 52C45;
D O I
暂无
中图分类号
学科分类号
摘要
Given a family of sets on the plane, we say that the family is intersecting if for any two sets from the family their interiors intersect. In this paper, we study intersecting families of triangles with vertices in a given set of points. In particular, we show that if a set P of n points is in convex position, then the largest intersecting family of triangles with vertices in P contains at most (1/4+o(1))n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({1}/{4}+o(1))\left( {\begin{array}{c}n\\ 3\end{array}}\right) $$\end{document} triangles.
引用
下载
收藏
页码:728 / 737
页数:9
相关论文
共 50 条