Intersection Theorems for Triangles

被引:0
|
作者
Peter Frankl
Andreas Holmsen
Andrey Kupavskii
机构
[1] Renyi Institute,Department of Mathematical Sciences
[2] Moscow Institute of Physics and Technology,G
[3] KAIST,SCOP, CNRS
[4] University Grenoble-Alpes,undefined
来源
关键词
Extremal hypergraphs; Geometric set systems; Intersecting triangles; 05D05; 05C65; 52C45;
D O I
暂无
中图分类号
学科分类号
摘要
Given a family of sets on the plane, we say that the family is intersecting if for any two sets from the family their interiors intersect. In this paper, we study intersecting families of triangles with vertices in a given set of points. In particular, we show that if a set P of n points is in convex position, then the largest intersecting family of triangles with vertices in P contains at most (1/4+o(1))n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({1}/{4}+o(1))\left( {\begin{array}{c}n\\ 3\end{array}}\right) $$\end{document} triangles.
引用
下载
收藏
页码:728 / 737
页数:9
相关论文
共 50 条
  • [1] Intersection Theorems for Triangles
    Frankl, Peter
    Holmsen, Andreas
    Kupavskii, Andrey
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 728 - 737
  • [2] INTERSECTION TRIANGLES AND BLOCK INTERSECTION NUMBERS OF STEINER SYSTEMS
    GROSS, BH
    MATHEMATISCHE ZEITSCHRIFT, 1974, 139 (02) : 87 - 104
  • [3] Intersection theorems with a continuum of intersection points
    Roy. Netherlands Acad. Arts and Sci., Dept. of Econometrics and CentER, Tilburg University, Tilburg, Netherlands
    不详
    J. Optim. Theory Appl., 2 (311-335):
  • [4] Intersection theorems with a continuum of intersection points
    Herings, PJJ
    Talman, AJJ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 96 (02) : 311 - 335
  • [5] Intersection Theorems with a Continuum of Intersection Points
    P. J. J. Herings
    A. J. J. Talman
    Journal of Optimization Theory and Applications, 1998, 96 : 311 - 335
  • [6] The Number of Triangles in Random Intersection Graphs
    Liang Dong
    Zhishui Hu
    Communications in Mathematics and Statistics, 2023, 11 : 695 - 725
  • [7] The Number of Triangles in Random Intersection Graphs
    Dong, Liang
    Hu, Zhishui
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (04) : 695 - 725
  • [8] Intersection theorems on polytopes
    van der Laan, G
    Talman, D
    Yang, ZF
    MATHEMATICAL PROGRAMMING, 1999, 84 (01) : 25 - 38
  • [9] Intersection theorems for multisets
    Meagher, Karen
    Purdy, Alison
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 52 : 120 - 135
  • [10] Intersection theorems on polytopes
    Gerard van der Laan
    Dolf Talman
    Zaifu Yang
    Mathematical Programming, 1999, 84 : 25 - 38