The Proper Dissipative Extensions of a Dual Pair

被引:0
|
作者
Christoph Fischbacher
Sergey Naboko
Ian Wood
机构
[1] University of Kent,School of Mathematics, Statistics and Actuarial Science
[2] St. Petersburg State University,Department of Math. Physics, Institute of Physics
来源
关键词
Dissipative operators; Operator extensions; Dual pairs; Primary 47B44; 47A20; Secondary 47E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let A and (-A~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-\widetilde{A})}$$\end{document} be dissipative operators on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} and let (A,A~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A,\widetilde{A})}$$\end{document} form a dual pair, i.e. A⊂A~∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \subset \widetilde{A}^*}$$\end{document}, resp. A~⊂A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{A} \subset A^*}$$\end{document}. We present a method of determining the proper dissipative extensions A^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{A}}$$\end{document} of this dual pair, i.e. A⊂A^⊂A~∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\subset \widehat{A} \subset\widetilde{A}^*}$$\end{document} provided that D(A)∩D(A~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}(A)\cap\mathcal{D}(\widetilde{A})}$$\end{document} is dense in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}. Applications to symmetric operators, symmetric operators perturbed by a relatively bounded dissipative operator and more singular differential operators are discussed. Finally, we investigate the stability of the numerical range of the different dissipative extensions.
引用
收藏
页码:573 / 599
页数:26
相关论文
共 50 条
  • [31] Dissipative Hyperbolic Geometric Flow on Modified Riemann Extensions
    Nagaraja, H. G.
    Harish, D.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2015, 6 (02): : 55 - 60
  • [32] PROPER PSEUDOCOMPACT EXTENSIONS OF COMPACT ABELIAN GROUP TOPOLOGIES
    COMFORT, WW
    ROBERTSON, LC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 86 (01) : 173 - 178
  • [33] A Note on Group Extensions and Proper 3-Realizability
    Cardenas, M.
    Lasheras, F. F.
    Quintero, A.
    Roy, R.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3303 - 3309
  • [34] Dissipative solitons in pair-ion plasmas
    Ghosh, Samiran
    Adak, Ashish
    Khan, Manoranjan
    PHYSICS OF PLASMAS, 2014, 21 (01)
  • [35] Dissipative dynamics of a pair of paraelectric tunneling impurities
    Terzidis, O.
    Wurger, A.
    Journal of Physics Condensed Matter, 1996, 8 (39):
  • [36] The dissipative dynamics of a pair of paraelectric tunnelling impurities
    Terzidis, O
    Wurger, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (39) : 7303 - 7320
  • [37] Dissipative crystallization of ion-pair receptors
    Skala, Luke P.
    Aguilar-Enriquez, Xavier
    Stern, Charlotte L.
    Dichtel, William R.
    CHEM, 2023, 9 (03): : 709 - 720
  • [38] Vacuum instability and pair nucleation in a dissipative medium
    Iengo, R
    Jug, G
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 78 (01): : 13 - 28
  • [39] On the Sprague-Grundy function of extensions of proper Nim
    Boros, Endre
    Gurvich, Vladimir
    Ho, Nhan Bao
    Makino, Kazuhisa
    INTERNATIONAL JOURNAL OF GAME THEORY, 2021, 50 (03) : 635 - 654
  • [40] A Note on Group Extensions and Proper 3-Realizability
    M. Cárdenas
    F. F. Lasheras
    A. Quintero
    R. Roy
    Mediterranean Journal of Mathematics, 2016, 13 : 3303 - 3309