On p-variation of bifractional Brownian motion

被引:0
|
作者
Wen-sheng Wang
机构
[1] Hangzhou Normal University,Department of Mathematics
来源
Applied Mathematics-A Journal of Chinese Universities | 2011年 / 26卷
关键词
Bifractional Brownian motion; variation; strongly consistent; fractal nature; 60G15; 60G17; 60F10; 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study p-variation of bifractional Brownian motion. As an application, we introduce a class of estimators of the parameters of a bifractional Brownian motion and prove that both of them are strongly consistent; as another application, we investigate fractal nature related to the box dimension of the graph of bifractional Brownian motion.
引用
收藏
页码:127 / 141
页数:14
相关论文
共 50 条
  • [31] Hausdorff measures of the image, graph and level set of bifractional Brownian motion
    Luan NaNa
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 2973 - 2992
  • [32] Chain rules and p-variation
    Norvaisa, R
    STUDIA MATHEMATICA, 2002, 149 (03) : 197 - 238
  • [33] On functions of bounded p-variation
    Kolyada, V. I.
    Lind, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 582 - 604
  • [34] Hausdorff measures of the image, graph and level set of bifractional Brownian motion
    LUAN NaNa School of Mathematical Sciences
    Science China(Mathematics), 2010, 53 (11) : 2973 - 2992
  • [35] Renormalized self-intersection local time of bifractional Brownian motion
    Zhenlong Chen
    Liheng Sang
    Xiaozhen Hao
    Journal of Inequalities and Applications, 2018
  • [36] P-VARIATION OF LOCAL MARTINGALES
    LEPINGLE, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (21): : 917 - 919
  • [37] Renormalized self-intersection local time of bifractional Brownian motion
    Chen, Zhenlong
    Sang, Liheng
    Hao, Xiaozhen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [38] p-Variation of strong Markov processes
    Manstavicius, M
    ANNALS OF PROBABILITY, 2004, 32 (3A): : 2053 - 2066
  • [39] Continuity of p-variation in the Vietoris topology
    Prus-Wisniowski, Franciszek
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1452 - 1468
  • [40] On Maps Of Bounded p-Variation With p>1
    V. V. Chistyakov
    O. E. Galkin
    Positivity, 1998, 2 : 19 - 45