Seasonal Changes in Submarine Groundwater Discharge and Associated Nutrient Transport into a Tideless Semi-enclosed Embayment (Obama Bay, Japan)

被引:0
|
作者
Ryo Sugimoto
Hisami Honda
Shiho Kobayashi
Yoshitake Takao
Daisuke Tahara
Osamu Tominaga
Makoto Taniguchi
机构
[1] Fukui Prefectural University,Research Center for Marine Bioresources
[2] Research Institute for Humanity and Nature,Field Science Education and Research Center
[3] Kyoto University,Faculty of Marine Biosciences
[4] Fukui Prefectural University,undefined
来源
Estuaries and Coasts | 2016年 / 39卷
关键词
Submarine groundwater discharge; Radon; Nutrients; Semi-enclosed embayment;
D O I
暂无
中图分类号
学科分类号
摘要
We carried out a seasonal study of fresh submarine groundwater discharge (SGD) and associated nutrient fluxes in a semi-enclosed bay along a tideless coastal zone using a 222Rn and salinity mass balance model for a whole bay scale. The resulting SGD rates showed large intra-annual variability from 0.05 × 106 to 0.77 × 106 m3 day−1, which were controlled by seasonal changes in the interaction of multiple driving forces, including water table height and seawater level. The highest SGD rate in early spring was induced by heavy snow and low sea level, whereas the seasonal increase in sea level gradually suppressed fresh SGD rates. In summer, an elevated water table may induce higher SGD rates (approximately 0.4 × 106 m3 day−1) regardless of high sea levels. The highest SGD fraction in total terrestrial freshwater fluxes also occurred in summer (>40 %), due to the decreasing rate of surface river discharge. The seasonally averaged SGD rate was 0.36 × 106 m3 day−1. This value was similar to the annual groundwater recharge rate (0.33 × 106 m3 day−1) estimated by the water balance method in the basin. Nutrient fluxes from SGD were approximately 42, 65, and 33 % of all terrestrial fluxes of dissolved inorganic nitrogen, phosphorous, and silicate, respectively. The average fraction of SGD in the water fluxes including terrestrial and oceanic water was low (0.3 %), but that of nutrient fluxes increased to 20–38 %. Higher nutrient concentrations in groundwater compensated for the lower volumetric flux of groundwater. Because primary production was mostly restricted by phosphorous throughout the year, phosphorous-enriched nutrient transport via SGD would play an important role in biological production.
引用
收藏
页码:13 / 26
页数:13
相关论文
共 37 条
  • [21] Assessment of submarine groundwater discharge (SGD) and associated nutrient subsidies to Xiangshan Bay (China), an aquaculture area
    Peng, Tong
    Liu, Jianan
    Yu, Xueqing
    Zhang, Fenfen
    Du, Jinzhou
    JOURNAL OF HYDROLOGY, 2022, 610
  • [22] Investigation of submarine groundwater discharge and associated nutrient inputs into Laizhou Bay (China) using radium quartet
    Wang, Xuejing
    Li, Hailong
    Zhang, Yan
    Zheng, Chunmiao
    Gao, Maosheng
    MARINE POLLUTION BULLETIN, 2020, 157
  • [23] Radium isotope assessment of submarine groundwater discharge and associated nutrient inputs in Eastern Liaodong Bay, China
    Guo, Qiaona
    Zhao, Yue
    Li, Mengjun
    Liu, Jinhui
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [24] Submarine groundwater discharge and associated nutrient fluxes to Discovery Bay, Jamaica (vol 230, 106431, 2019)
    Gordon-Smith, Debbie-Ann D. S.
    Greenaway, Anthony M.
    ESTUARINE COASTAL AND SHELF SCIENCE, 2020, 233
  • [25] Submarine Groundwater Discharge-Derived Nutrient Loads to San Francisco Bay: Implications to Future Ecosystem Changes
    Kimberly A. Null
    Natasha T. Dimova
    Karen L. Knee
    Bradley K. Esser
    Peter W. Swarzenski
    Michael J. Singleton
    Mark Stacey
    Adina Paytan
    Estuaries and Coasts, 2012, 35 : 1299 - 1315
  • [26] Submarine Groundwater Discharge-Derived Nutrient Loads to San Francisco Bay: Implications to Future Ecosystem Changes
    Null, Kimberly A.
    Dimova, Natasha T.
    Knee, Karen L.
    Esser, Bradley K.
    Swarzenski, Peter W.
    Singleton, Michael J.
    Stacey, Mark
    Paytan, Adina
    ESTUARIES AND COASTS, 2012, 35 (05) : 1299 - 1315
  • [27] Estimating submarine groundwater discharge and associated nutrient inputs into Daya Bay during spring using radium isotopes
    Jing-yan Gao
    Xue-jing Wang
    Yan Zhang
    Hai-long Li
    Water Science and Engineering, 2018, 11 (02) : 120 - 130
  • [28] Submarine groundwater discharge and associated nutrient fluxes in the Greater Bay Area, China revealed by radium and stable isotopes
    Wang, Qianqian
    Wang, Xuejing
    Xiao, Kai
    Zhang, Yan
    Luo, Manhua
    Zheng, Chunmiao
    Li, Hailong
    GEOSCIENCE FRONTIERS, 2021, 12 (05)
  • [29] Submarine groundwater discharge and associated nutrient fluxes in the Greater Bay Area, China revealed by radium and stable isotopes
    Qianqian Wang
    Xuejing Wang
    Kai Xiao
    Yan Zhang
    Manhua Luo
    Chunmiao Zheng
    Hailong Li
    Geoscience Frontiers, 2021, 12 (05) : 403 - 416
  • [30] Tracing submarine groundwater discharge and associated nutrient fluxes into Jiaozhou Bay by continuous 222Rn measurements
    Guo, Zhan-Rong
    Ma, Zhi-Yong
    Zhang, Bin
    Yuan, Xiao-Jie
    Liu, Hua-Tai
    Liu, Jie
    Guo, Z.-R. (gzr@xmu.edu.cn), 1600, China University of Geosciences (38): : 1073 - 1080