A singular value p-shrinkage thresholding algorithm for low rank matrix recovery

被引:0
|
作者
Yu-Fan Li
Kun Shang
Zheng-Hai Huang
机构
[1] Sun Yat-Sen University,School of Mathematics (Zhuhai)
[2] Hunan University,College of Mathematics and Econometrics
[3] Tianjin University,School of Mathematics
关键词
Low rank matrix recovery; Matrix completion; Singular value ; -shrinkage thresholding; Image inpainting; 65K05; 90C26; 90C59;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an iterative singular value p-shrinkage thresholding algorithm for solving low rank matrix recovery problem, and also give its two accelerated versions using randomized singular value decomposition. The convergence result of the proposed singular value p-shrinkage thresholding algorithm is proved. Numerical results based on simulation data and real data show the effectiveness of all the three proposed algorithms compared to the existing state-of-the-art algorithms.
引用
收藏
页码:453 / 476
页数:23
相关论文
共 50 条
  • [31] Riemannian thresholding methods for row-sparse and low-rank matrix recovery
    Henrik Eisenmann
    Felix Krahmer
    Max Pfeffer
    André Uschmajew
    Numerical Algorithms, 2023, 93 : 669 - 693
  • [32] Riemannian thresholding methods for row-sparse and low-rank matrix recovery
    Eisenmann, Henrik
    Krahmer, Felix
    Pfeffer, Max
    Uschmajew, Andre
    NUMERICAL ALGORITHMS, 2023, 93 (02) : 669 - 693
  • [33] AN ITERATIVE HARD THRESHOLDING ESTIMATOR FOR LOW RANK MATRIX RECOVERY WITH EXPLICIT LIMITING DISTRIBUTION
    Carpentier, Alexandra
    Kim, Arlene K. H.
    STATISTICA SINICA, 2018, 28 (03) : 1371 - 1393
  • [34] Matrix completion by singular value thresholding: Sharp bounds
    Klopp, Olga
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2348 - 2369
  • [35] MINIMAX RISK OF MATRIX DENOISING BY SINGULAR VALUE THRESHOLDING
    Donoho, David
    Gavish, Matan
    ANNALS OF STATISTICS, 2014, 42 (06): : 2413 - 2440
  • [36] AN ITERATIVE HARD THRESHOLDING ALGORITHM WITH IMPROVED CONVERGENCE FOR LOW-RANK TENSOR RECOVERY
    Goulart, Jose Henrique de M.
    Favier, Gerard
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1701 - 1705
  • [37] Iterative partial matrix shrinkage algorithm for matrix rank minimization
    Konishi, Katsumi
    Uruma, Kazunori
    Takahashi, Tomohiro
    Furukawa, Toshihiro
    SIGNAL PROCESSING, 2014, 100 : 124 - 131
  • [38] IMPROVED ROBUST PCA USING LOW-RANK DENOISING WITH OPTIMAL SINGULAR VALUE SHRINKAGE
    Moore, Brian E.
    Nadakuditi, Raj Rao
    Fessler, Jeffrey A.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 13 - 16
  • [39] The Stability of Low-Rank Matrix Reconstruction: A Constrained Singular Value View
    Tang, Gongguo
    Nehorai, Arye
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (09) : 6079 - 6092
  • [40] LOW-RANK MATRIX APPROXIMATIONS DO NOT NEED A SINGULAR VALUE GAP
    Drineas, Petros
    Ipsen, Ilse C. F.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (01) : 299 - 319